Electrohydro dynamics convection in dielectric rotating Oldroydian nanofluid in porous medium
Keywords:
convection, dielectric, electric field, nanofluid, Oldroydian, porous medium, rotationAbstract
An electrically conducting nanofluid saturated with a uniform porous media has been tested to determine how rotation affects thermal convection. Utilizing the Oldroydian model, which incorporates the specific effects of the electric field, Brownian motion, thermophoresis, and rheological factors for the distribution of nanoparticles that are top- and bottom-heavy, one may use linear stability theory to ensure stability. Analysis and graphical representation of the effects of the AC electric field Rayleigh number, Taylor number, Lewis number, modified diffusivity ratio, concentration Rayleigh number, and medium porosity are provided for both bottom-heavy and top-heavy distribution.

Published
How to Cite
Issue
Section
Copyright (c) 2023 Pushap Lata Sharma, Mohini Kapalta, Ashok Kumar, Deepak Bains, Sumit Gupta, Pankaj Thakur

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of the Nigerian Society of Physical Sciences (JNSPS) is published under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)4.0 (CC BY-NC) license. This license was developed to facilitate open access, namely, it allows articles to be freely downloaded and to be re-used and re-distributed without restriction, as long as the original work is correctly cited. More specifically, anyone may copy, distribute or reuse these articles, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article, mine the article even for commercial purposes, as long as they credit the author(s).