Solar Energy Storage by Fuel Cell Technology at Abomey-Calavi (Benin)

Authors

  • Odilon Joseph TOWANOU Laboratoire de Physique du Rayonnement (LPR), Physics Department, University of Abomey-Calavi (UAC), Abomey-Calavi, Benin Republic
  • Hagninou Elagnon Venance Donnou Laboratoire de Physique du Rayonnement (LPR), Physics Department, University of Abomey-Calavi (UAC), Abomey-Calavi, Benin Republic
  • Gabin Koto N’Gobi Laboratoire de Physique du Rayonnement (LPR), Physics Department, University of Abomey-Calavi (UAC), Abomey-Calavi, Benin Republic
  • Augustin Enonsi Leode Laboratoire de Physique du Rayonnement (LPR), Physics Department, University of Abomey-Calavi (UAC), Abomey-Calavi, Benin Republic
  • Basile Kounouh´ewa Laboratoire de Physique du Rayonnement (LPR), Physics Department, University of Abomey-Calavi (UAC), Abomey-Calavi, Benin Republic

Keywords:

Renewable Energy, storage, solar energy, electrolysis, hydrogen, fuel cell, Benin

Abstract

West Africa has a great amount of sunshine power, varying between 5 kWh.m^{-2}.day^{-1} and 7 kWh.m^{-2}.day^{-1}. This power constitutes high energy source in the region. However, several locations in that area have no access to energy because of the lack of suitable technology and projects exploiting the source. The fundamental problem related to sun power or to renewable energies in general is the lack of efficient technology for energy storage. Batteries are generally used for this storage, but once charged, the excess of the energy from the solar photovoltaic panels (PV) is lost. Therefore, it is very important to find a system to recover the excess in order to optimize its use. In this context, hydrogen is considered a very promising candidate to fulfill this function and could become a highly developed energy vector in the future. The very numerous works undertaken over the past decade for the production of electricity by hydrogen fuel cells bear witness to this. The objective of this study is to test a more reliable solar energy storage system by using fuel cell technology. To achieve this, three steps have been necessary: (i) make an electrolyser using materials, (ii) produce hydrogen using a system of PV panels and (iii) convert the hydrogen produced into electricity through a fuel cell. The results obtained indicate a production of 0.020 m^3 of hydrogen after 150 min with a yield of 85.86%. The production of electricity by a 2 V fuel cell gives an efficiency of 0.0042%. Even if this value is low, a part of the lost energy has been recovered. In view of these results, the improvement of the device for converting chemical energy into electricity deserves to be deeply explored in West Africa.

Dimensions

R. Benchrifa, A. Bennouna & D. Zejli, “Role de l’hydrogˆ ene dans le` stockage de l’electricit´ e a base des´ energies renouvelables”, Revue des´ Energies Renouvelables 7 (2007) 103.

S. A. Khalil, “Performance Evaluation and Statistical Analysis of Solar Energy Modeling: A Review and Case Study”, J. Nig. Soc. Phys. 4 (2022) 911.

O. Achkari, & A. El Fadar, “Renewable Energy Storage Technologies- A Review”, Proceedings of Engineering and Technology-PET 35 (2018) 69.

M. K. Singla, P. Nijhawan, & A. S. Oberoi, “Solar-PV and Fuel Cell Based Hybrid Power Solution for Remote Locations”, International Journal of Engineering and Advanced Technology (IJEAT) 9 (2019) 861.

D. Akinyele, E. Olabode, & A. Amole, “Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems” Inventions 5 (2020) 42.

S. Rabih, “Contribution a la modelisation de syst´ emes r` eversibles de types´ electrolyseur et pile a hydrog´ ene en vue de leur couplage aux g` en´ erateurs´ photovolta¨?ques”, Universite Paul Sabatier de Toulouse (2008) 183.´

A. Yilanci, I. Dincer, & H. K. Ozturk, “A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications”, Progress in Energy and Combustion Science 35 (2009) 231.

S. Faias, P. Santos, J. Sousa, & R. Castro, “An Overview on Short and Long-Term Response Energy Storage Devices for Power Systems Applications” RE and PQJ 1 (2008) 442.

H. Ibrahima, A. Ilinca, & J. Perron, “Energy storage systemsCharacteristics and comparisons”, Renewable and Sustainable Energy Reviews 12 (2008) 1221.

G. Ofualagba, I. K. Charles, & O. A. Okiemute, “Solar Hydrogen Fuel Cell Technology, Principle, Applications and Market”, Journal of Energy Technologies and Policy 2 (2012) 32.

F. Zhang, P. Zhao, M. Niub & J. Maddy, “The Survey of Key Technologies in Hydrogen Energy Storage”, International Journal of Hydrogen Energy 41 (2016) 14535.

I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah & K. R. Ward, “The role of hydrogen and fuel cells in the global energy system”, Energy Environ Sci. 12 (2019) 463.

J. A. Okolie, B. R. Patra, A. Mukherjee, S. Nanda, A. K. Dalai, & J. A. Kozinski, “Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy”, International journal of hydrogen energy 46 (2021) 8885.

M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, & D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges”, Renewable and Sustainable Energy Reviews 146 (2021) 11118.

M. A. Pellow, C. J. M. Emmott, C. J. Barnhart, & S. M. Benson, “Hydrogen or batteries for grid storage? A net energy analysis”, Energy Environ. Sci. 8 (2015) 1938.

N. Belmonte, C. Luetto, S. Staulo, P. Rizzi, & M. Baricco, “Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications”, Challenges 8 (2017) 1.

H. Derbal, M. Belhamel & A. M’Raoui, “L’hydrogene,` vecteur energ´ etique solaire”, Revue des Energies Renouvelables (2007) 235.´

S. I. Akinsola, A. B. Alabi, M. A. Soliu, & T. Akomolafe, “Optimization of Method and Components of Enzymatic Fuel Cells”, Nig. Soc. Phys. Sci. 1 (2019) 143.

A. Fopah-Lele, A. Kabore-Kere, J. G. Tamba & I. Yaya-Nadjo, “Solar 7

electricity storage through green hydrogen production: A case study”, International Journal of Energy Research 45 (2021) 13007.

I. A. Jumare, “Design of Standalone Photovoltaics (PV) / Biogas Hybrid Power System with Hydrogen Storage: Case of Northern Nigeria”, International Journal of Engineering Research Technology (IJERT) 8 (2019) 313.

B. Soldi, I. Gokalp, A. Zeroual, M. A¨ ¨?t Lachgar et A. Aymard, “Conception et realisation d’un syst´ eme de production d’hydrog` ene a l’aide d’un` dispositif de catalyse”, Revue des Energies Renouvelables 12 (2009) 149.

R. Sa¨?sset, G. Fontes, C. Turpin & S. Astier, “energies renouvelables et´ pile a combustible dans l’enseignement pratique du genie´ electrique Jour-´ nal sur l’enseignement des sciences et technologies de l’information et des systemes”, Hors-S` erie´ 4 (2005) 9.

A. Tsakiris, Analysis of hydrogen fuel cell and battery efficiency, World Sustainable Energy Days 2019, Young Energy Researchers Conference Wels/Austria, 2019.

F. Laurencelle, e´tude d’un syste`me d’e´nergies Renouvelables a base d’hydroge`ne, Universite du Qu´ ebec a trois-rivi´ eres M` emoire de Master,´ 2001.

K. Y. Cheung, S. T. Cheung, R. G. De Silva, M. P. Juvonen, R. Singh, & J. J. Woo, Large-Scale Energy Storage Systems, Imperial College London, 2003.

D. Gautam, S. Anjum, & S. Ikram, “Proton Exchange Membrane (PEM) in Fuel Cells: A Review”, The IUP Journal of Chemistry 3 (2010) 51.

B. Ceran, “A comparative analysis of energy storage technologies”, Energy policy journal 21 (2018) 97.

T. Ogawa, M. Takeuchi, and Y. Kajikawa, “Comprehensive analysis of trends and emerging technologies in all types of fuel cells based on a computational method”, Sustainability 10 (2018) 458.

J. Labbe,´ L’hydroge`ne e´lectrolytique comme moyen de stockage d’e´lectricite´ pour syste`mes photovolta¨?ques isole´s, l’Ecole des Mines de Paris, 2006.

S. Giddey, S. P. S. Badwal, A. Kulkarni, C. Munnings, “A comprehensive review of direct carbon fuel cell technology”, Progress in Energy and Combustion Science 38 (2012) 360.

G. Hoogers, Fuel Cell Technology Handbook, CRC Press: Boca Raton, FL, USA, 2002.

J. Topler, & J. Lehmann,¨ Hydrogen and Fuel Cell: Technologies and Market Perspectives, Springer: Berlin/Heidelberg, 2016.

J. Hodges, W. Geary, S. Graham, P. Hooker & R. Goff, Injecting hydrogen into the gas network-a literature search, Health and Safety Laboratory, Buxton, 2015.

D. Stolten, R. C. Samsun, & N. Garland, Fuel Cells - Data, Facts and Figures, Wiley-VCH, Weinheim, 2015.

S. Srinivasan, Fuel cells: from fundamentals to applications, New York Springer, 2006.

Published

2023-04-22

How to Cite

Solar Energy Storage by Fuel Cell Technology at Abomey-Calavi (Benin). (2023). Journal of the Nigerian Society of Physical Sciences, 5(2), 1264. https://doi.org/10.46481/jnsps.2023.1264

Issue

Section

Special Issue : 3rd biennial AScIN conference OAU,  Nigeria

How to Cite

Solar Energy Storage by Fuel Cell Technology at Abomey-Calavi (Benin). (2023). Journal of the Nigerian Society of Physical Sciences, 5(2), 1264. https://doi.org/10.46481/jnsps.2023.1264