Simulation and Optimization of Lead-Based Perovskite Solar Cells with Cuprous Oxide as a P-type Inorganic Layer


  • D. Eli Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria; Department of Physical Sciences, Greenfield University, Kaduna, Nigeria
  • M. Y. Onimisi Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • S. Garba Department of Chemistry, Nigerian Defence Academy, Kaduna, Nigeria
  • R. U. Ugbe Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • J. A. Owolabi Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • O. O. Ige Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • G. J. Ibeh Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • A. O. Muhammed Department of Physics, Bayero University, Kano, Nigeria


Perovskite solar cells, inorganic HTM, device simulation, cuprous oxide, defect density


The hole transporting material (HTM) is responsible for selectively transporting holes and blocking electrons which also plays a crucial role in the efficiency and stability of perovskite solar cells (PSCs). Spiro-MeOTAD is the most popular material, which is expensive and can be easily affected by moisture content. There is a need to find an alternative HTM with sufficiently high resistance to moisture content. In this paper, the influence of some parameters with cuprous oxide (Cu2O) as HTM was investigated using a solar cell capacitance simulator (SCAPS). These include the influence of doping concentration and thickness of the absorber layer, the effect of thickness of ETM and HTM as well as electron affinities of ETM and HTM on the performance of the PSCs. From the obtained results, it was found that the concentration of dopant in the absorber layer, the thickness of ETM and HTM and the electron affinity of HTM and ETM affect the performance of the solar cell. The cell performance improves greatly with the reduction of ETM electron affinity and its thickness. Upon optimization of parameters, power conversion efficiency for this device was found to be 20.42% with a current density of 22.26 mAcm-2, voltage of 1.12 V, and fill factor of 82.20%. The optimized device demonstrates an enhancement of 58.80%, 2.25%, 20.40% and 30.23% in PCE, Jsc, FF, and Voc over the initial cell. The results show that Cu2O in lead-based PSC as HTM is an efficient system and an alternative to spiro-MeOTAD.

J. S. Manser, & P. V. Kamat ``Band filling with free charge carriers in organometal halide perovskites", Nature Photonics 8 (2014) 737.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, L. Han, ``A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules", Nature 550 (2017) 92.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, ``Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3", Science 342 (2013) 344.

M. Liu, M. B. Johnston, & H. J. Snaith, ``Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature 501 (2013) 395.

Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, H. J. Snaith, “Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites", Nature Energy 2 (2017) 9.

Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, S. Liu, ``Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization", Advanced Materials 27 (2015) 5176.

D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, C. Li, ``Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition", Journal of Materials Chemistry A 3 (2015) 9401.

S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I, Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M. V. Kovalenko, “Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites"', Nature Photonics 10 (2016) 585.

F. Hao, K. Stoumpos, D. H. Cao, R. P. H. Chang, M. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells”, Nature Photonics 8 (2014) 489.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan & J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells”, Nature Communications 5 (2015) 5784.

H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, J. Huang, ``Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals", Nature Photonics 10 (2016) 333.

I. Chung, B. Lee, J. He, R. P. H Chang & M. G. Kanatzidis, ``All-solid-state dye-sensitized solar cells with high efficiency", Nature 485 (2012) 486.

Y. C. Kim, K. H. Kim, D. Y. Son, D. N. Jeong, J. Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, N. G. Park, ``Printable organometallic perovskite enables large-area, lowdose X-ray imaging", Nature 550 (2017) 87.

Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, S. F. Liu, ``Thinness- and shape-controlled growth for ultrathin singlecrystalline perovskite wafers for mass production of superior photoelectronic devices", Advanced Materials 28 (2016) 9204.

P. Gao M. Gratzel and M. K. Nazeeruddin, ``Organohalide lead perovskites for photovoltaic applications", Energy and Environmental Science 7 (2014) 2448.

W. S. Yang, B. M. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, ``Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells", Science 356 (2017) 1376.

K. T. Cho, S. Paek, G. Grancini, C. R. Carmona, P. Gao, Y. Lee, M K. Nazeeruddin, ``Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface", Energy and Environmental Science 10 (2017) 621.

S. Z. Haider, H. Anwar and M. Wang, ``A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material", Semiconductor Science and Technology 33 (2018) 12.

N. Rajamanickam, S. Kumari, V. K. Vendra, B. W. Lavery, J. Spurgeon, T. Druffel, and M.K. Sunkara, ``Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions", Nanotechnology 27 (2016) 235404.

K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim, and T. W. Lee, ``Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function", Advanced Materials 26 (2014) 6461.

D. Wang, M. Wright, N. K. Elumalai, and A. Uddin, ``Stability of perovskite solar cells", Solar Energy Materials and Solar Cells 147 (2016) 255.

W. Li, H. Dong, L. Wang, N. Li, X. Guo, J. Li, Y. Qiu, ``Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination", Journal of Materials Chemistry A 2 (2014) 13587.

R.S. Sanchez, and E. Mas-Marza, ``Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells", Solar Energy Materials Solar Cells 158 (2016) 189.

X. Zhao, and N-G. Park, ``Stability issues on perovskite solar cells", Photonics 2 (2015) 1139.

W. Chen, Y. Wu, Y, Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, L. Han, ``Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers", Science 350 (2015) 944.

Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N. A. Luechinger, A. Hirsch, P. Schmuki, H. P. Steinruck, R. H. Fink, M. Halik, H. J. Snaith, C. J. Brabec, ``A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells", Science 358 (2017) 1192.

G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Gratzel, M. K. Nazeeruddin, ``One-year stable perovskite solar cells by 2D/3D interface engineering", Nature Communications 8 (2017) 15684.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, H. Han, ``A hole-conductor–free fully printable mesoscopic perovskite solar cell with high stability", Science 345 (2014) 295.

N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Gratzel, “Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%". Science 358 (2017) 768.

W. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, B. Lin, L. Wang, M. N. Hedhili, Y. Li, K. Wu, X. Wang, O. F. Mohammed and T. Wu, ``Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells", Nanoscale 8 (2016) 6173.

Y. J. Chen, M.H. Li, J.C.A. Huang & P. Chen, ``Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells", Scientific Reports 8 (2018) 7646.

R. Wei, ``Modelling of Perovskite Solar Cells", M.Sc Degree Thesis, Queensland University of Technology 2018.

M. I. Hossain, F. H. Alharbi and N. Tabet, ``Copper oxide as inorganic hole transport material for lead halide perovskite-based solar cells", Solar Energy 120 (2015) 370.

K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, and Y. Lin, ``Controllable design of solid-state perovskite solar cells by SCAPS device simulation", Solid State Electron 126 (2016) 75.

M. Amalina, and M. Rusop, ``Morphological, electrical and optical properties of $gamma$-copper (I) iodide thin films by mist atomization technique", World Journal of Engineering 9 (2012) 251.

U. Mandadapu, S. V. Vedanayakam , and K. Thyagarajan, ``Simulation and analysis of lead based perovskite solar cell using SCAPS-1D", Indian Journal of Science Technology 10 (2017) 1.

K. G. Lim, S. Ahn, H. Kim, M. R. Choi, D. H. Huh, and T. W. Lee, ``Self-doped conducting polymer as a hole-extraction layer in organic–inorganic hybrid perovskite solar cells", Advanced Materials Interfaces 3 (2016) 1500678.

Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, ``Qualifying composition dependent p and n self-doping in CH3NH3PbI3", Applied Physics Letters 105 (2014) 163508.

L. A. Frolova, N. N. Dremova, and P. A. Troshin, ``The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium–lead iodide (MAPbI3) perovskite solar cells", Chemical Communication 51 (2015) 14917.

C. S. Jiang, M. Yang, Y. Zhou, B. To, S. U. Nanaakkara, J. M. Luther, W. Zhou, J. J. Berry, J. V. de Lagemaat, N. P. Padture, K. Zhu, M. M. Al-jassim, ``Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential", Nature Communications 6 (2015) 8397.

U. Thakur, R. Kisslinger, and K. Shankar, ``One-dimensional electron transport layers for perovskite solar cells", Nanomaterials 7 (2017) 1.

ibitem{r42} K. G. Lim, S. Ahn, Y. H. Kim, Y. Qi, and T. W. Lee, ``Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic-inorganic hybrid perovskite solar cells Energy and Environmental Science 9 (2016) 932.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. Seok, ``Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells", Nature Materials 13 (2014) 897.

M. I. Ahmed, A. Habib and S. S Javaid, ``Perovskite solar cells: potentials, challenges, and opportunities", International Journal of Photoenergy 2015 (2014) 1.

Z. Yuan, Y. Yang, Z. Wu, S. Bai, W. Xu, T. Song, X. Gao, F. Gao, and B. Sun, ``Approximately $800 ~nm$ thick inhole-free perovskite films via facile solvent retarding process for efficient planar solar cells", ACS Applied Materials Interfaces 8 (2016) 34446.



How to Cite

Simulation and Optimization of Lead-Based Perovskite Solar Cells with Cuprous Oxide as a P-type Inorganic Layer. (2024). Journal of the Nigerian Society of Physical Sciences, 1(2), 72-81.



Original Research

How to Cite

Simulation and Optimization of Lead-Based Perovskite Solar Cells with Cuprous Oxide as a P-type Inorganic Layer. (2024). Journal of the Nigerian Society of Physical Sciences, 1(2), 72-81.