Corrosion Inhibition Properties of Lawsone Derivatives againts Mild Steel: A Theoretical Study

Authors

  • Saprizal Hadisaputra Chemistry Education Division, FKIP, University of Mataram. Jalan Majapahit 62, Mataram, 83125, Indonesia
  • Lalu Rudyat Telly Savalas Chemistry Education Division, FKIP, University of Mataram. Jalan Majapahit 62, Mataram, 83125, Indonesia

Keywords:

Lawsone, Substituents, DFT, MP2, Monte Carlo, Corrosion inhibitors

Abstract

Theoretical studies have been carried out using DFT, ab initio MP2 and Monte Carlo (MC) simulations of corrosion inhibitors from lawsone derivatives against carbon steel. The research focuses on studying the effect of substituent groups in the lawsone structure on the efficiency of corrosion inhibition in mild steel. Quantum chemical parameters of lawstone inhibitors in neutral and protonated conditions have been calculated. Fukui’s function analysis predicts that the active side of the inhibitor will be adsorbed on the mild steel surface. MC simulation is used to understand the adsorption patterns of lawsone compounds on metal surfaces. The organic inhibitor L-NH2 has better performance as a corrosion inhibitor for mild steel in neutral or protonated conditions.

Dimensions

B. E. Rani & B. B. Basu, “Green inhibitors for corrosion protection of metals and alloys: An overview”, International Journal of Corrosion (2012) 1.

S. A. Umoren, M. M. Solomon, I. B. Obot & R. K. Suleiman, “A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals”, Journal of Industrial and Engineering Chemistry 76 (2019) 91.

K. Adama & I. Onyeachu, “The corrosion characteristics of SS316L stainless steel in a typical acid cleaning solution and its inhibition by 1-benzylimidazole: Weight Loss, electrochemical and sem characterizations”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 214.

T. O. Martins, E. A. Ofudje, A. A. Ogundiran, O. A. Ikeoluwa, O. A. Oluwatobi, E. F. Sodiya & O. Ojo, “Cathodic corrosion inhibition of steel by Musa paradisiaca leave extract”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 740.

S. Dananjaya, M. Edussuriya & A. Dissanayake, “Inhibition action of lawsone on the corrosion of mild steel in acidic media”, TOJSAT 2 (2016) 32.

A. Y. El-Etre, M. Abdallah & Z. E. El-Tantawy, “Corrosion inhibition of some metals using lawsonia extract”, Corrosion Science 47 (2005) 385.

H. Ju, L. Ding, C. Sun & J.-jing Chen, “Quantum chemical study on the corrosion inhibition of some oxadiazoles”, Advances in Materials Science and Engineering (2015) 1.

S. Hadisaputra, A. A. Purwoko, Y. Wirayani, M. Ulfa & S. Hamdiani, “Density functional and perturbation calculation on the corrosion inhibition performance of benzylnicotine and its derivatives”, In AIP Conference Proceedings, AIP Publishing LLC 224 (2019) 020006.

G. Gece, “The use of quantum chemical methods in corrosion inhibitor studies”, Corrosion Science 50 (2008) 2981.

B. T. Ogunyemi & F. K. Ojo, “Corrosion inhibition potential of thiosemicarbazide derivatives on aluminium: Insight from Molecular Modelling and QSARS approaches”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 915.

H. R. Obayes, G. H. Alwan, A. H. Alobaidy, A. A. Al-Amiery, A. A. Kadhum & A. B. Mohamad, “Quantum chemical assessment of benzimidazole derivatives as corrosion inhibitors”, Chemistry Central Journal 8 (2014) 1.

A. Thomas, T. S. Khan & P. Gupta, “Density functional theory based indicators to predict the corrosion inhibition potentials of ceramic oxides in harsh corrosive media”, Physical Chemistry Chemical Physics 25 (2023) 2537.

S. Hadisaputra, A. A. Purwoko, L. R. T. Savalas, N. Prasetyo, E. Yuanita & S. Hamdiani, “Quantum Chemical and Monte Carlo Simulation Studies on Inhibition Performance of Ca eine and Its Derivatives against Corrosion of Copper”, Coatings 10 (2020) 1086.

M. J. Frisch, G.W. Trucks, H. B. Schlegel et al., Gaussian 09, Gaussian, Inc, Wallingford, CT, (2009).

W. Shu-Yu, H.Wen-Zhi, L. Chang, L. Guang-Ming & Z. Fei-Er, “Characterizations and preparation of Mg(OH)2 nanocrystals through ultrasonic–hydrothermal route”, Research on Chemical Intermediates 42 (2015) 4135.

M. Ouakki et al., “Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium,” Heliyon 5 (2019) e02759.

T. Koopmans, “U¨ ber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms”, Physica 1 (1934) 104.

R. G. Parr, L. v. Szentp´aly & S. Liu, “Electrophilicity Index”, Journal of the American Chemical Society 121 (1999) 1922.

W. Yang & R. G. Parr, “Hardness, softness, and the fukui function in the electronic theory of metals and catalysis”, Proceedings of the National Academy of Sciences 82 (1985) 6723.

I. Lukovits, E. K´alm´an & F. Zucchi, “Corrosion Inhibitors—Correlation between Electronic Structure and Efficiency”, Corrosion 57 (2001) 3.

S. Hadisaputra, A. A., Purwoko, R. Rahmawati, D. Asnawati, I. Ilhamsyah & S. Hamdiani, N. Nuryono, “Experimental and theoretical studies of (2R)-5-hydroxy-7- methoxy-2-phenyl-2,3-dihydrochromen-4-one as corrosion inhibitor for iron in hydrochloric acid”, International Journal of Electrochemical Science (2019) 11110.

W. Yang & W. J. Mortier, “The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines,” Journal of the American Chemical Society 108 (1986) 5708.

O. Oyeneyin, D. Akerele, N. Ojo & O. Oderinlo, “Corrosion Inhibitive Potentials of some 2H-1-benzopyran-2-one Derivatives- DFT Calculations”, Biointerface Research in Applied Chemistry 11 (2021) 13968.

R. L. C. Akkermans, N. A. Spenley & S. H. Robertson, “Monte Carlo methods in Materials Studio”, Molecular Simulation 39 (2013) 1153.

V. V. Mehmeti & A. R. Berisha, “Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid—An Experimental and Theoretical Study”, Frontiers in Chemistry 5 (2017).

A. Berisha, “Experimental, Monte Carlo and Molecular Dynamic Study on Corrosion Inhibition of Mild Steel by Pyridine Derivatives in Aqueous Perchloric Acid”, Electrochem 1 (2020) 188.

S. Kirkpatrick, C. D. Gelatt & M. P. Vecchi, “Optimization by Simulated Annealing”, Science 220 (1983) 4598.

V. Thac¸i, R. Hoti, A. Berisha & J. Bogdanov, “Corrosion study of copper in aqueous sulfuric acid solution in the presence of (2E,5E)-2,5-dibenzylidenecyclopentanone and (2E,5E)-bis[(4-dimethylamino)benzylidene]cyclopentanone: Experimental and theoretical study”, Open Chemistry 18 (2020) 1412..

W. B. W. Nik, F. Zulkifli, O. Sulaiman, K. B. Samo & R. Rosliza, “Study of Henna (Lawsonia inermis) as Natural Corrosion Inhibitor for Aluminum Alloy in Seawater”, IOP Conference Series: Materials Science and Engineering 36 (2012) 012043.

S. Salunke-Gawali, L. Kathawate, Y. Shinde, V. G. Puranik & T. Weyherm ¨uller, “Single crystal X-ray structure of Lawsone anion: Evidence for coordination of alkali metal ions and formation of naphthosemiquinone radical in basic media”, Journal of Molecular Structure 1010 (2012) 38.

R.Wati, S. Hadisaputra, D. Asnawati & D. Hermanto, “Protection of copper corrosion in acidic medium using pinostrobin”, Acta Chimica Asiana 1 (2018) 50.

I. B. Obot, D. D. Macdonald & Z. M. Gasem, “Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview”, Corrosion Science 99 (2015) 1.

E. A. M. Gad, E. M. S. Azzam & S. A. Halim, “Theoretical approach for the performance of 4-mercapto-1-alkylpyridin-1-ium bromide as corrosion inhibitors using DFT”, Egyptian Journal of Petroleum 27 (2018) 695.

S. Hadisaputra, A. A. Purwoko & S. Hamdiani, “Substituents effects on the corrosion inhibition performance of pyrazolone against Carbon Steels: Quantum Chemical and Monte Carlo Simulation Studies”, International Journal of Corrosion and Scale Inhibition 10 (2021) 419.

Y. Pan et al., “Intramolecular hydrogen transfer in the ionization process of alpha-alanine”, Physical Chemistry Chemical Physics 11 (2009) 1189.

M. Yadav, D. Behera & S. Kumar, “Experimental and theoretical investigation on adsorption and corrosion inhibition properties of imidazopyridine derivatives on mild steel in hydrochloric acid solution”, Surface and Interface Analysis 46 (2014) 640.

S. M. Hosseini, M. J. Bahrami & P. Pilvar, “Adsorption e ect of 1-((2-hydroxynaphtalen-1-YL) (phenyl)methyl)urea on the carbon steel corrosion in hydrochloric acid media,” Materials and Corrosion 61 (2009) 866.

M. A. Bedair, “The effect of structure parameters on the corrosion inhibition effect of some heterocyclic nitrogen organic compounds”, Journal of Molecular Liquids 219 (2016) 128.

B. Idir & F. Kellou-Kerkouche, “Experimental and theoretical studies on corrosion inhibition performance of phenanthroline for cast iron in acid solution,” Journal of Electrochemical Science and Technology 9 (2018) 260.

R. G. Parr & W. Yang, “Density functional approach to the frontierelectron theory of chemical reactivity”, Journal of the American Chemical Society 106 (1984) 4049.

T. W. Quadri, L. O. Olasunkanmi, O. E. Fayemi, H. Lgaz, O. Dagdag, E.-S. M. Sherif, A. A. Alrashdi, E. D. Akpan, H.-S. Lee & E. E. Ebenso, “Computational insights into quinoxaline-based corrosion inhibitors of steel in HCL: Quantum Chemical Analysis and QSPR-Ann Studies”, Arabian Journal of Chemistry 15 (2022) 103870.

S. Kumar, D. G. Ladha, P. C. Jha & N. K. Shah, “Theoretical study of chloro-N-(4-methoxybenzylidene)aniline derivatives as corrosion inhibitors for zinc in hydrochloric acid”, International Journal of Corrosion (2013) 1.

Z. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A. T. Benjelloun & M. Ebn Touhami, “DFT theoretical study of 7-r-3methylquinoxalin-2(1h)-thiones (RH; CH3; cl) as corrosion inhibitors in hydrochloric acid”, Corrosion Science 68 (2013) 223.

S. Hadisaputra, Z. Iskandar & D. Asnawati, “Prediction of the corrosion inhibition efficiency of imidazole derivatives: A Quantum Chemical Study”, Acta Chimica Asiana 2 (2019) 88.

M. Rbaa, A. S. Abousalem, M. Galai, H. Lgaz, B. Lakhrissi, I. Warad & A. Zarrouk, “New N-heterocyclic compounds based on 8-hydroxyquinoline as efficient corrosion inhibition for mild steel in HCL Solution: Experimental and theoretical assessments”, Arabian Journal for Science and Engineering 46 (2020) 257.

S. John, R. Jeevana, K. K. Aravindakshan, and A. Joseph, “Corrosion inhibition of mild steel by N(4)-substituted thiosemicarbazone in hydrochloric acid media”, Egyptian Journal of Petroleum 26 (2017) 405.

S. Hadisaputra, S. Hamdiani, M. A. Kurniawan, and N. Nuryono, “Influence of macrocyclic ring size on the corrosion inhibition efficiency of Dibenzo crown ether: A Density Functional Study”, Indonesian Journal of Chemistry 17 (2017) 431.

S. Hadisaputra, A. A. Purwoko & S. Hamdiani, “Copper Corrosion Protection by 4-Hydrocoumarin Derivatives: Insight from Density Functional Theory, Ab Initio, and Monte Carlo Simulation Studies”, Indonesian Journal of Chemistry 22 (2022) 413.

K. F. Khaled & A. El-Maghraby, “Experimental, Monte Carlo and molecular dynamics simulations to investigate corrosion inhibition of mild steel in hydrochloric acid solutions”, Arabian Journal of Chemistry 7 (2014) 319.

S. Hadisaputra, A. A. Purwoko, A. Hakim, N. Prasetyo & S. Hamdiani, “Corrosion Inhibition Properties of Phenyl Phthalimide Derivatives against Carbon Steel in the Acidic Medium: DFT, MP2, and Monte Carlo Simulation Studies”, ACS Omega 7 (2022) 33054.

Published

2023-06-14

How to Cite

Corrosion Inhibition Properties of Lawsone Derivatives againts Mild Steel: A Theoretical Study. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1371. https://doi.org/10.46481/jnsps.2023.1371

Issue

Section

Original Research

How to Cite

Corrosion Inhibition Properties of Lawsone Derivatives againts Mild Steel: A Theoretical Study. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1371. https://doi.org/10.46481/jnsps.2023.1371