Experimental and computational studies of the corrosion inhibitive effects of Zingiber officinale rhizomes on mild steel corrosion in acidic solutions

Authors

  • C. B. Adindu Department of Chemistry, Imo State University, P.M.B 2000 Owerri, Imo State, Nigeria
  • S. C. Nwanonenyi Department of Polymer and Textile Engineering, Federal University of Technology, P.M.B.1526, Owerri, Nigeria
  • C. B. C. Ikpa Department of Chemistry, Imo State University, P.M.B 2000 Owerri, Imo State, Nigeria

Keywords:

Zingiber officinale, solvation molecules, corrosion, molecular dynamic simulation,, Inhibition Efficiency

Abstract

The study investigates the anticorrosion potentials of Zingiber officinale (ZO) on mild steel induced in 1.0 M HCl and 0.5 M H2SO4 acid solution respectively using structural characterization (gas chromatography-mass spectroscopy, GC-MS and Fourier transform infrared spectroscopy, FTIR) and electrochemical (electrochemical impedance spectroscopy, EIS and potentiodynamic polarization, PDP) techniques respectively and theoretical simulations. The structural characterization was performed to identify chemical constituents and functional groups present in the plant extract whereas electrochemical techniques and theoretical computations were used to examine the anticorrosion potentials of the extract and validate the experimental results. The GC-MS result revealed the presence of twenty-three (23) compounds within the extract and out of which three (1-(1,5-dimethyl-4-hexenyl)-4-methyl-, dodecanoic acid and 9-Octadecenoic acid (Z)-2-hydroxy-1-(hydroxymethyl)ethyl ester) were selected for computational simulation and the results of FTIR revealed the presence of the following functional groups (O-H, C=C, C=O, C-C and C-H) in the ZO extract. The results of EIS revealed that extract of ZO exhibited corrosion inhibition efficieny of 82.7% and 93.6 % for mild steel in 1 M HCl and 0.5 M H2SO4 solution respectively at maximum inhibitor concentration of 1000 mg/L for mild steel. Also, PDP results revealed that ZO extract functioned as mixed inhibitor because both the anodic and cathodic reaction process was altered. The quantum chemical calculation results revealed that 9- Octadecenoic acid (Z)-2-hydroxy-1-(hydroxymethyl) ethyl ester had a good energy gap (\Delta E) compared to other two compounds, indicating its better adsorption interaction with the metal surface in sulfuric acid environment. This was further confirmed by its good adsorption energy of -355.55 Kcal/mol with mild steel surface in H2SO4 environment compared with -167.81Kcal/mol in HCl environment from the molecular dynamic simulation.

Dimensions

T. Popoola, A. S. Grema, G. K. Latinwo, B. Gutti & A. S. Balogun, “Corrosion problems during oil and gas production and its mitigation”, International Journal of Industrial Chemistry 35 (2013) 2228, https://doi.org/10.1186/2228.

M. H. Hassan & A. M. Abdullah, “Corrosion of general oil-field grade steel in CO2 environment an update in the light of current understanding”, International journal of electrochemical science 12 (2017) 4277, doi:10.20964/2017.05.12.

M. V. Fiori-Bimbi, P. E. Alvarez, H. Vaca, & Gervasi C. A., “Corrosion inhibition of mild steel in HCl solution by peptin”, Corros Science 92 (2015) 192.

B. T. Ogunyemi & B. K. Ojo, “Corrosion inhibition potential of thiosemicarbazide derivatives on aluminium: Insight from molecular modeling and QSAR Approaches”, J. Nig. Soc. Phys. Sci. 5 (2023) 915.

G. Sigircik, T.Tuken & M. Erbil, “Assessment of the efficiency of 3, 4-diaminobenzonitrile against the corrosion of steel”, Corros Science 102 (2016) 437.

S. C. Nwanonenyi, I. C. Madufor, P. C. Uzoma & I. C. Chukwujike, “Corrosion inhibition of mild steel in sulphuric acid environment using millet starch and potassium iodide”, Int. Research J. of Pure & Applied Chemistry 2 (2016) 1, DOI: 10.9734/IRJPAC/2016/27881.

S. C. Nwanonenyi, I. O. Arukalam, H. C. Obasi, U. L. Ezeamaku, I. O. Eze, I. C. Chukwujike and M. A. Chidiebere, “Corrosion inhibitive behavior and adsorption of millet (Panicum miliaceum) starch on mild steel in hydrochloric acid environment”, J. Bio Tribo Corros 3 (2017) 54, DOI 10.1007/s40735-017-0115.

A. H. Al-Moubaraki, A. Chaouiki, J. M. Alahmari, W. A. Al-Hammadi, E. A. Noor, A. A. Al-Ghamdi & Y. G. Ko, “Development of Natural Plant Extracts as Sustainable Inhibitors for Efficient Protection of Mild Steel: Experimental and First-Principles Multi-Level Computational Methods”, Materials (Basel) 23 (2022) 8688, doi:10.3390/ma15238688.

C. C. Aralu, H. O. Chukwuemeka-Okorie & K. G. Akpomie, “Inhibition and adsorption potentials of mild steel corrosion using methanol extract of Gongronemalatifoliuim”, Appl Water Sci. 12 (2021) 2021.

S. Mo, H. Q. Luo & N. B. Li, “Plant extracts as green corrosion inhibitors for steel in sulphuric acid”, Chem. 70 (2016) 1131, doi.org/10.1515/chempap-2016-0055.

C. B. Adindu, E. E. Oguzie & M. A. Chidiebere, “Corrosion inhibition and adsorption behavior of extract of Funtumiaelastica on mild steel in acidic solution”, International Letters of Chemistry, Physics and Astronomy 66 (2016) 119.

T. O. Martins, E. A. Ofudje, A. A. Ogundiran, O. A.Ikeoluwa, O. A. Oluwatobi, E. F. Sodiya & O. Ojo, “Cathodic corrosion inhibition of steel by Musa paradisiaca leave extract”, J. Nig. Soc. Phys. Sci. 4 (2022) 740.

H. FBMS, E. I. Attari, A. ElBribri & L. Mhaidra, “Synthesis and anticorrosion for carbon steel of 4-amino- 3,5 Bis (4-Hydroxy-3-methoxy)-1,2.4 Triazole in hydrochloric acid solution”, American Journal of Engineering Research 4 3 (2015) 44.

K. K. Adama & I. B.Onyeachu, “The corrosion characteristics of SS316L stainless steel in a typical acid cleaning solution and its inhibition by 1-benzylimidazole: Weight loss,electrochemical and SEM characterizations”, J. Nig. Soc. Phys. Sci. 4 (2022) 214.

M. Cui & X. Li, “Nitrogen and sulfur Co-doped carbon dots as ecofriendly and effective corrosion inhibitors for Q235 carbon steel in 1 M HCl solution”, RSC Advances 11 (2021) 21607, doi: 10.1039/d1ra02775a.

M. Faiz, A.Zahari, K. Awang & H. Hussin, “Corrosion inhibition on mild steel in 1 M HCl solution by Cryptocaryanigra extracts and three of its constituents (alkaloids)”, RSC Adv. 10 (2020) 6547, Doi:10.1039/c9ra05654h.

F. O. Kolawole, S. K. Kolawole, O. M. Olugbemi & S. B. Hassan, Green Corrosion Inhibitory Potentials of Cassava Plant (Manihotesculenta Crantz) Extract Nanoparticles (CPENPs) in Coatings for Oil and Gas Pipeline, In (Ed.) Corrosion Inhibitors, IntechOpen, (2019), https://doi.org/10.5772/intechopen.79221.

S. Wan, H. Wei, R. Quan, Z. Luo, H. Wang, B. Liao & X. Guo, “Soybean extract firstly used as a green corrosion inhibitor with high efficacy and yield for carbon steel in acidic medium”, Industrial Crops and Products 187 (2022) 115354, https://doi.org/10.1016/j.indcrop.2022.115354.

L. Feng, S. Zhang, L. Hao, H. Du, R. Pan, G. Huang & H. Liu, “Cucumber (Cucumissativus L.) Leaf Extract as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution”,Electrochemical, Functional and Molecular Analysis. Molecules 27 (2022) 3826. https://doi.org/10.3390/molecules27123826

A. Kadhim, N. Betti,H. A. Al-Bahrani, M. K. S. Al-Ghezi, T. Gaaz, A. H. Kadhum & A. Alamiery, “A mini review on corrosion, inhibitors and mechanism types of mild steel inhibition in an acidic environment”, International Journal Corrosion Scale Inhibition 3 (2021) 861.

N. E. Chile, et al. “Theoretical study and adsorption behavior of urea on mild steel in automotive gas oil (AGO) Medium”,Lubricants 10 (2022) 157, https://doi.org/10.3390/lubricants10070157.

S. Malhotra & A. P. Singh, “Medicinal properties of ginger (ZingiberoficinaleRosc.)”,Nat. Prod. Radi. 2 (2003) 296, http://hdl.handle.net/123456789/12292

M. H. Shahrajabian, W.Sun & Q. Cheng, “Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry”, ActaAgricultural Scandinavica B-Soil and Plant Science 69 (2019) 6.

N. Jayaraman, P. Punniyakotti, A. U. Nanthini, G. Benelli, M. Kadarkarai & R, Aruliah, “Ginger extract as green biocide to control microbial corrosion of mild steel”, Biotech 7 (2017) 133, https://doi.org/10.1007/s13205-017-0783-9

N. D. Suma & S. Sreeja, “Adsorption behaviour of Ginger powder on Mild steel corrosion inPotable water”, Journal of Material and Environmental Science 8 (2019) 778.

A. S. Fouda, A. A. Nazeer & M. Fakih, “Ginger Extract as Green Corrosion Inhibitor for Steel in Sulfide Polluted Salt Water”, Korean chemical Society 57 (2013) 272, https://doi.org/10.5012/jkcs.2013;57.2.272.

C. B. Adindu, M. A. Chidiebere, F. C. Ibe, C. E. Ogukwe & E. E. Oguzie, “Protecting Mild Steel from Acid Corrosion Using Extract from Ocimumgratissimum Leaves”, International Letters of Chemistry, Physics and Astronomy 73 (2017) 9, doi:10.18052/www.scipress.com/ILCPA.73.9.

M. A. Chidiebere, N. Lebe, C. B. Adindu, K. L. Oguzie, B. Okolue, B. E. Onyeachu & E. E. Oguzie, “Inhibition of Acid Corrosion of Mild Steel Using Delonixregia Leaves Extract”, International Letters of Chemistry, Physics and Astronomy 69 (2017) 74.

B. Adindu, C. E. Ogukwe, F. Eze & E. Oguzie, Exploiting the Anticorrosion Effects of Vernonia Amygdalina Extract for Protection of Mild Steel in Acidic Environments, Journal of Electrochemical Science and Technology 74 (2016) 251.

E. E. Oguzie, C. B. Adindu, C. K. Enenebeaku, C. E. Ogukwe, M. AChidiebere & K. L. Oguzie, “Natural Products for Materials Protection: Mechanism of Corrosion Inhibition of Mild Steel by Acid Extracts of Piper guineense”, ACS Journal of physical Chemistry C 116 (2012) 13603, dx.doi.org/10.1021/jp300791s.

T. Jianhong, G. Lei, W.Dan, W.Shanfei, Y. Rongrong, Z. Fan, K. Savas, “ Electrochemical and Computational studies on the corrosion inhibition of mild Steel by 1-Hexadecyl-3-methylimidazolium Bromide in HCl medium”,International Journal of electrochemical Sciences 15 (2020) 1893, doi: 10.20964/2020.03.36.

F. A. Khalida, B. A. Shaima, Z. M. Ayad, A. A. Ahmed, K. A. Talib, A. M. Salam, H. K. Abdul Amir & B. Abu, “Synthesis, inhibition effects and quantum chemical studies of a novel coumarin derivative on the corrosion of mild steel in a hydrochloric acid solution”,BMC Chemistry 10 (2016) 23.

B. Umar, A. Uzairu & G.Shallangwa, “Understanding inhibition of steel corrosion by some potent triazole derivatives of pyrimidine through density functional theory and molecular dynamics simulation studies”, JOTCSA 6 (2019) 455.

J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.), John Wiley & Sons Ltd, Chichester, (2000).

C. P. Ozoemena & M. Charles, “Computational Modeling and Statistical analysis on the corrosion inhibition of aluminium in nitric acid solution by ethanolic extract of citrus sinesis seed”,Global Journal of Pure and Applied Chemistry Research 7 (2019) 25.

I. C. Iwu,R. N. Oze, U. L.Onu, N. Amarachi & A. Ukaoma, “phytochemical and GC-MS analysis of the rhizome of Zingiber officinale plant grown in eastern part of Nigeria”, African Journal of Biology and Medical research 11 (2018) 43.

E. .E. Oguzie,K. L. Oguzie, C. O.Akalezi, I. O.Udeze, J. N.Ogbulie, and V. O. Njoku, “Natural Products for Materials Protection: Corrosion and Microbial Growth Inhibition Using Capsicum frutescens Biomass Extracts”, ACS Sustainable Chemistry and Engineering, 1 (2013) 214, .doi.org/10.1021/sc300145k.

C. O. Akalezi, C. K. Enenebaku & E. E. Oguzie, “Application of aqueous extracts of coffee senna for control of mild steel corrosion in acidic environments”.Int J IndChem 3 (2012) 13, https://doi.org/10.1186/2228-5547-3-13

U. C. Ibeji, C. D. Akintayo, H. O. Oluwasola & E. O. Akintemi, “Anti-Corrosion potential of the Ortho and ParaSubstituted Schiff Bases of 2- Methoxybenzaldehyde on Fe (110) surface in acid medium: Synthesis, DFT and Molecular Dynamics Studies”, Research Square (2022) DOI: https://doi.org/10.21203/rs.3.rs-1869552/v1.

R. S. Oguike & O. Oni, “Density Functional Theory of Mild Steel Corrosion in Acidic Media Using Dyes as Inhibitor: Adsorption onto Fe(110) from Gas Phase”Int. J. Res. Chem. Environ. 4 (2014) 177.

R. S. Oguike, A. M. Kolo, A. M. Shibdawa & H. A. Gyenna, “Density Functional Theory of Mild Steel Corrosion in Acidic Media Using Dyes as Inhibitor: Adsorption onto Fe(110) from Gas Phase”, ISRN Physical Chemistry 2013 (2013) 175910, https://doi.org/10.1155/2013/175910.

A. E. Founda, A. H. El-Ashalany, A. F. Molouk, N. S. Elsheikh & A. S Abousalem, “Experimental and computational chemical studies on the corrosion inhibitive properties of carbonitrile compounds for carbon steel in aqueous solutions”, Science Representative 11 (2021) 21672, https://doi.org/10.1038/s41598-021-00701-z

Published

2023-08-12

How to Cite

Experimental and computational studies of the corrosion inhibitive effects of Zingiber officinale rhizomes on mild steel corrosion in acidic solutions. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1386. https://doi.org/10.46481/jnsps.2023.1386

Issue

Section

Original Research

How to Cite

Experimental and computational studies of the corrosion inhibitive effects of Zingiber officinale rhizomes on mild steel corrosion in acidic solutions. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1386. https://doi.org/10.46481/jnsps.2023.1386