Theoretical Study on 10C Elastic Scattering Cross Sections Using Different Cluster Density Distributions and Different Potentials


  • Sunday Olorunfunmi Department of Physics & Engineering Physics, Obafemi Awolowo University, Ile-Ife 220005, Osun State, Nigeria
  • Armand Bahini iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa
  • Adenike Olatinwo Department of Physics \& Engineering Physics, Obafemi Awolowo University, Ile-Ife 220005, Osun State, Nigeria


Elastic scattering, density distribution, Optical model, cluster model.


Elastic scattering cross sections are a fundamental aspect of nuclear physics research, and studying the cross sections of various nuclei can provide important insights into the behavior of nuclei. In this study, the elastic scattering cross sections of 10C projectile by 27Al, 58Ni, and 208Pb target nuclei are analyzed. The aim of this study is to investigate the cluster structure of 10C and the sensitivity of the elastic scattering cross sections to different potentials. To achieve this objective, the double folding optical model and a simple cluster approach are used to analyze the cross sections. The real part of the optical potential is obtained by folding two different effective interactions, Michigan-3-Yukawa (M3Y) and JeukenneLejeune-Mahaux (JLM), with four different cluster density distributions of the 10C nucleus: 6Be + \alpha, 9B + p, 8Be + p + p, and \alpha + \alpha + p + p. The imaginary part is taken to be a Woods-Saxon phenomenological form. The sensitivity of the elastic scattering cross sections to different potentials is assessed by comparing the results obtained using different potentials. The cluster structure of 10C is validated by comparing the theoretical results with experimental data. The results show that the cross sections are sensitive to the choice of potential used and that the cluster structure of 10C is validated. The theoretical results show reasonable agreement with the experimental data.



L. Canto, P. Gomes, R. Donangelo, J. Lubian, and M. S. Hussein, “Recent developments in fusion and direct reactions with weakly bound nuclei”, Phys. Rep. 596 (2015) 1. DOI:

N. Keeley, R. Raabe, N. Alamanos, and J. Sida, “Fusion and direct reactions of halo nuclei at energies around the Coulomb barrier”, Prog. in Part. and Nucl. Phys. 59, (2007) 579. DOI:

D. Savran, T. Aumann, and A. Zilges, “Experimental studies of the Pygmy Dipole Resonance”, Prog. in Part. and Nucl. Phys. 70 (2013) 210. DOI:

L. F. Canto, V. Guimaraes, J. Lubi˜ an, and M. S. Hussein, “The total reac-´ tion cross section of heavy-ion reactions induced by stable and unstable exotic beams: the low-energy regime”, Eur. Phys. J. A 56 (2020) 281. DOI:

J. Wang et al., “7Be, 8B+208Pb Elastic scattering at abovebarrier energies”, J. of Phys.: Conf. Series 420 (2013) 012075. DOI:

T. Aumann and C. A. Bertulani, “Indirect methods in nuclear astrophysics with relativistic radioactive beams”, Prog. in Part. and Nucl. Phys. 112 (2020) 103753. DOI:

Y. Y. Yang et al., “Quasi-elastic scattering of 10,11C and 10B from a natPb target”, Phys. Rev. C 90 (2014) 014606. DOI:

R. Linares et al., “Elastic scattering measurements for the 10C+208Pb system at ELab = 66 MeV”, Phys. Rev. C 103 (2021) 044613. DOI:

N. Curtis et al., “Breakup reaction study of the Brunnian nucleus 10C”, Phys. Rev. C 77 (2008) 021301(R). DOI:

E. F. Aguilera et al., “Elastic scattering of 10C+27Al”, IOP Conf. Series: J. of Phys.: Conf. Series 876 (2017) 012001. DOI:

Olorunfunmi et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1392 11

M. Aygun, “Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10?14,16C) by various target nuclei”, Pramana - J. Phys. 93 (2019) 72. DOI:

V. Guimar˜aes et al., “Strong coupling effect in the elastic scattering of the 10C+58Ni system near barrier”, Phys. Rev. C 100 (2019) 034603. DOI:

M. Aygun, “Comprehensive Research of 10C nucleus using different theoretical approaches”, Ukr. J. Phys. 66 (2021) 8. DOI:

S. D. Olorunfunmi and A. Bahini, “Microscopic analysis of elastic scattering angular distributions for five different density distribution of 9Be Nucleus”, Phys. Atom. Nuclei 84 (2021) 448. DOI:

M. Anwar, B. El-Naggar, and K. O. Behairy, “Microscopic analysis of the 8B + 58Ni elastic scattering at energies from 20.7 to 29.3 MeV”, J. Phys. Soc. Jpn. 91 (2022) 014201. DOI:

W. A. Yahya, “Alpha decay half-lives of 171?189Hg isotopes using modified Gamow–like model and temperature dependent proximity potential”, J. Nig. Soc. Phys. Sci. 2 (2020) 250. DOI:

S. Adams, E. Joseph, and G. Kamal, “Validation of Tritium Calibration Curve in CIEMAT/NIST Activity Measurement Using Non Linear Least Squared Fittings and Calculations of the Half-Life and Decay Constant of Potassium-40”, J. Nig. Soc. Phys. Sci. 4 (2022) 621. DOI:

J. P. Jeukenne, A. Lejeunne, and C. Mahaux, “Optical-model potential in finite nuclei from Reid’s hard core interaction”, Phys. Rev. C 16 (1977) 80. DOI:

G. F. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, “Interactions for inelastic scattering derived from realistic potentials”, Nucl. Phys. A 284 (1977) 399. DOI:

G. R. Satchler and W. G. Love, “Folding model potentials from realistic interactions for heavy-ion scattering”, Phys. Rep. 55 (1979) 183. DOI:

F. Carstoiu and M. Lassau, “Microscopic description of elastic scattering and reaction cross sections of 6Li and 11Li”, Nucl. Phys. A 597, (1996) 269. DOI:

O. M. Knyazov and E. F. Hefter, “An analytical folding potential for deformed nuclei”, Z. Phys. A 301 (1981) 277. DOI:

A. A. Ibraheem, M. El-Azab Farid, and A. S. Al-Hajjaji, “Analysis of 8B proton halo nucleus scattered from 12C and 58Ni at different energies”, Brazilian J. Phys. 48 (2018) 507. DOI:

M. Aygun and Z. Aygun, “A theoretical study on different cluster configurations of the 9Be nucleus by using a simple cluster model”, Nucl. Sci. Tech. 28 (2017) 86. DOI:

M. Aygun, “A comprehensive study on the internal structure and the density distribution of 12Be”, Rev. Mex. Fis. 62 (2016) 336.

S. M. Lukyanov et al., “Some Insights into Cluster Structure of 9Be from 3He + 9Be Reaction”, World J. Nucl. Sci. Technol. 5 (2015) 265. DOI:

A. G. Camacho, P. R. S. Gomes, J. Lubian, and I. Padron, “Simultaneous´ optical model analysis of elastic scattering, fusion, and breakup for the 9Be + 144Sm system at near-barrier energies”, Phys. Rev. C 77 (2008) 054606. DOI:

Y. Sert, R. Yegin, and H. Do?gan, “A theoretical investigation of 9Be + 27Al reaction: phenomenological and microscopic model approximation”, Indian J. Phys. 89 (2015) 1093. DOI:

L. C. Chamon et al., “Toward a global description of the nucleus-nucleus interaction”, Phys. Rev. C 66 (2002) 014610. DOI:

A. K. Chaudhuri, “Density distribution of 11Li and proton elastic scattering from 9Li and 11Li”, Phys. Rev. C 49 (1994) 1603. DOI:

R. A. Rego, “Closed-form expressions for cross sections of exotic nuclei”, Nucl. Phys. A 581 (1995) 119. DOI:

J. Cook, “DFPOT - A program for the calculation of double folded potentials”, Commun. Comput. Phys. 25 (1982) 125. DOI:

M. Rhoades-Brown, M. H. Macfarlane, S. C. Pieper, “Techniques for heavy-ion coupled-channels calculations. I. Longrange Coulomb coupling”, Phys. Rev. C 21 (1980) 2417. DOI:

M. H. Macfarlane, S. C. Pieper, “Ptolemy: a program for heavy-ion direct-reaction calculations”, Argonne National Laboratory Report No. ANL-76-11, (1978) (unpublished). DOI:

P. R. S. Gomes, J. Lubian, I. Padron, and R. M. Anjos, “Uncertainties in the comparison of fusion and reaction cross sections of different systems involving weakly bound nuclei”, Phys. Rev. C 71 (2005) 017601. DOI:

M. C. Mermaz, “Phase shift analysis of heavy-ion elastic scattering measured at intermediate energies”, Z. Phys. A 321 (1985) 613. DOI:



How to Cite

Olorunfunmi, S., Bahini, A., & Olatinwo, A. (2023). Theoretical Study on 10C Elastic Scattering Cross Sections Using Different Cluster Density Distributions and Different Potentials. Journal of the Nigerian Society of Physical Sciences, 5(2), 1392.



Original Research