Improving forecasting accuracy using quantile regression neural network combined with unrestricted mixed data sampling

Authors

  • Umaru Hassan School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Statistics, Federal Polytechnic Damaturu, 620221 Yobe, Nigeria
  • Mohd Tahir Ismail School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Keywords:

Neural network, Quantile regression, Unrestricted mixed data sampling frequency, Frequency alignments, GDP

Abstract

A traditional regression method involving time series variables is often observed at the same frequencies. In a situation where the frequencies differ, the higher ones are averaged or aggregated to the lower frequency. A Mixed Data Sampling (MIDAS) regression model was introduced to address such problems. In any country, stakeholders are interested in monitoring and forecasting accurately the Gross Domestic Product (GDP) using the dynamics of macroeconomic variables. We applied the hybrid QRNN-U-MIDAS model to forecast quarterly GDP using monthly and weekly data. The Quantile Regression Neural Network (QRNN) is designed to model nonlinear relationships amongst data sampled at the same frequency. Therefore, we take advantage of QRNN skills using the optimization techniques of gradient descent-based algorithms to optimise the estimated loss function Ea (\tau), and introduce them into the U-MIDAS framework, which can handle mixed data frequencies, and construct a QRNN-U-MIDAS model. The suggested hybrid QRNN-U-MIDAS model was implemented in an R-package that we created to perform both simulation and real-time data applications. The findings indicate that the QRNN-U-MIDAS regression model outperforms competing models in terms of its capacity for prediction across the conditional distribution of a response variable with a comprehensive view of the information contained in the variables, which is lacking in other competing models like U-MIDAS, ANN-U-MIDAS etc. More so, this novel model will add to the existing works of literature on robust forecasting models.

Dimensions

D. T. Utari & H. Ilma, “Comparison of methods for mixed data sampling (MIDAS) regression models to forecast Indonesian GDP using agricultural exports”, AIP Conference Proceedings 2021 (2018) 060016. https://doi.org/10.1063/1.5062780

E. Andreou, E. Ghysels & A. Kourtellos, “Regression models with mixed sampling frequencies”, Journal Econometrics 158 (2010) 246. https://doi.org/10.1016/j.jeconom.2010.01.004

E. Ghysels, A. Sinko & R. Valkanov, “MIDAS regressions: Further results and new directions”, Econometric Reviews 26 (2007) 53. https://doi.org/10.1080/07474930600972467

E. Ghysels, P. Santa-Clara & R. Valkanov, “The MIDAS Touch: Mixed data sampling regression models”, CIRANO Working Papers (2004). https://rady.ucsd.edu/ files/faculty-research/valkanov/midas-touch.pdf

C. Foroni & C. Schumacher, U-MIDAS : MIDAS regressions with unrestricted lag polynomials Massimiliano Marcellino Discussion Paper Series 1 : Economic Studies, Deutsche Bundesbank 35 (2011). https://hdl.handle.net/1814/40284

D. Pradeepkumar & V. Ravi, “Forecasting financial time series volatility using Particle Swarm Optimization trained Quantile Regression Neural Network”, Applied Soft Computing Journal 58 (2017) 35. https://doi.org/10.1016/j.asoc.2017.04.014

C. Foroni, M. Marcellino & C. Schumacher, Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials, (2014), [Online]. Available: http://wileyonlinelibrary.com/journal/rss-datasets

E. Ghysels, V. Kvedaras & V. Zemlys, “Mixed frequency data sampling regression models: The R package midasr”, J Stat Softw. 72 (2016) 1. https://doi.org/10.18637/jss.v072.i04

F. Barsoum & S. Stankiewicz, “Forecasting GDP growth using mixedfrequency models with switching regimes”, Int J Forecast. 31 (2015) 33. https://doi.org/10.1016/j.ijforecast.2014.04.002

Q. Xu, S. Liu, C. Jiang & X. Zhuo, “QRNN-MIDAS: A novel quantile regression neural network for mixed sampling frequency data”, Neurocomputing 457 (2021) 105. https://doi.org/10.1016/j.neucom.2021.06.006

Q. Xu, X. Zhuo, C. Jiang & Y. Liu, “An artificial neural network for mixed frequency data,” Expert Syst Appl. 118 (2019) 139. https://doi.org/10.1016/j.eswa.2018.10.013

R. K. B. Navas, S. Prakash & T. Sasipraba, “Artificial neural network based computing model for wind speed prediction: A case study of Coimbatore, Tamil Nadu, India”, Physica A: Statistical Mechanics and its Applications 542 (2020) 123383. https://doi.org/10.1016/j.physa.2019. 123383

L. Breiman, “Heuristics of instability and stabilization in model selection”, Ann. Statist. 24 (1996) 2350. https://doi.org/10.1214/aos/1032181158

Y. He & W. Zhang, “Probability density forecasting of wind power based on multi-core parallel quantile regression neural network”, Knowl Based Syst. 209 (2020) 1. https://doi.org/10.1016/j.knosys.2020.106431

S. Ly´ocsa & D. Stasek, “Improving stock market volatility forecasts with complete subset linear and quantile HAR models”, Expert Syst Appl. 183 (2021) 115416. https://doi.org/10.1016/j.eswa.2021.115416

P. H. Franses, “Yet another look at MIDAS regression”, Econometric Institute Research Papers (2016) 1. https://repub.eur.nl/pub/93331/EI2016-32.pdf

M. T. Armesto, K. M. Engemann & M. T. Owyang, “Forecasting with mixed frequencies”, Federal Reserve Bank of St. Louis Review 92 (2010) 536. https://doi.org/10.20955/r.92.521-36

Q. Xu, L. Wang, C. Jiang & X. Zhang, “A novel UMIDAS-SVQR model with mixed frequency investor sentiment for predicting stock market volatility”, 132 (2019) 12. https://doi.org/10.1016/j.eswa.2019.04.066

Y. Liu, Statistical methods for mixed frequency data sampling models, Digital Commons @ Michigan Tech, Michigan Technological University (2019). https://doi.org/10.37099/mtu.dc.etdr/881

M. Damane, “Forecasting the Government of Lesotho’s budget: an ARMIDAS approach”, African J. of Economic and Sustainable Development 7 (2020) 256. https://doi.org/10.1504/ajesd.2020.105688

D. Bams, G. Blanchard, I. Honarvar & T. Lehnert, “Does oil and gold price uncertainty matter for the stock market?”, J Empir Finance. 44 (2017) 285. https://doi.org/10.1016/j.jempfin.2017.07.003

C. Baumeister, P. Gu´erin & L. Kilian, “Do high-frequency financial data help forecast oil prices? The MIDAS touch at work”, Int J Forecast. 31 (2015) 238. https://doi.org/10.1016/j.ijforecast.2014.06.005

S. Gunay, G. Can & M. Ocak, “Forecast of China’s economic growth during the COVID-19 pandemic: a MIDAS regression analysis”, Journal of Chinese Economic and Foreign Trade Studies 14 (2021) 3. https://doi.org/10.1108/JCEFTS-08-2020-0053

T. B. G¨otz and K. Hauzenberger, “Large mixed-frequency VARs with a parsimonious time-varying parameter structure,” Econom J. 24 (2021) 442. https://doi.org/10.1093/ectj/utab001

S. Das, R. Demirer, R. Gupta & S. Mangisa, “Ac ce pt cr t”, Structural Change and Economic Dynamics (2019). https://doi.org/10.1016/j.strueco.2019.05.007

A. Babii, E. Ghysels & J. Striaukas, “Machine learning time series regressions with an application to nowcasting”, Journal of Business and Economic Statistics 40 (2022) 1094. https://doi.org/10.1080/07350015.2021.1899933

J. Khoo & A. W. K. Cheung, “Does geopolitical uncertainty affect corporate financing? Evidence from MIDAS regression”, Global Finance Journal 47 (2021) 100519. https://doi.org/10.1016/j.gfj.2020.100519

S. Penev, D. Leonte, Z. Lazarov & R. A. Mann, “Applications of MIDAS regression in analysing trends in water quality”, J Hydrol (Amst). 511 (2014) 159. https://doi.org/10.1016/j.jhydrol.2014.01.031

X. Zhao, M. Han, L. Ding & A. C. Calin, “Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA”, Environmental Science and Pollution Research 25 (2018) 2899. https://doi.org/10.1007/s11356-017-0642-6

S. Bhaghoe, G. Ooft & P. H. Franses, “Estimates of quarterly GDP growth using MIDAS regressions”, Econometric Institute Research Papers EI2019-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute (2019). https://repub.eur.nl/pub/118667/EI2019-29-Report.pdf

Z. Pan, Q. Wang, Y. Wang & L. Yang, “Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model”, Energy Econ. 72 (2018) 177. https://doi.org/10.1016/j.eneco.2018.04.008

H. Hassani, A. Rua, E. S. Silva & D. Thomakos, “Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis”, Int J Forecast. 35 (2019) 1263. https://doi.org/10.1016/j.ijforecast.2019.03.021

N. Kingnetr, T. Tungtrakul & S. Sriboonchitta, Forecasting GDP growth in Thailand with different leading indicators using MIDAS regression models, Part of the Studies in Computational Intelligence book series (SCI, volume 692) (2017). https://doi.org/10.1007/978-3-319-50742-2

G. L. Mazzi & J. Mitchell, “New methods for timely estimates: nowcasting euro area GDP growth using quantile regression”, Statistical Working Paper (2020). https://doi.org/10.2785/26603

R. S. Mariano & S. Ozmucur, “Predictive performance of mixedfrequency nowcasting and forecasting models (with application to Philippines inflation and GDP growth)”, Journal of Quantitative Economics 19 (2021) 383. https://doi.org/10.1007/s40953-021-00276-6

S. A. J. Rani, V. V. Haragopal & M. K. Reddy, “Forecasting inflation rate of India using neural networks”, International Journal of Computer Applications 158 (2017) 45. https://www.ijcaonline.org/archives/volume158/number5/rani-2017-ijca-912866.pdf

G. Kapetanios, “Analysis of the most recent modelling techniques for big data with particular attention to Bayesian ones”, (2018). https://doi.org/10.2785/679114

A. F. Adedotun, T. Latunde & O. A. Odusanya, “Modelling and forecast(2020) 94. https://doi.org/10.46481/jnsps.2020.94

G. O. Odekina, A. F. Adedotun, and O. F. Imaga, “Modeling and forecasting the third wave of Covid-19 incidence rate in Nigeria using vector autoregressive model approach”, J. Nig. Soc. Phys. Sci. 4 (2022) 431. https://doi.org/10.46481/jnsps.2021.431

E. M. Chouit, M. Rachdi, M. Bellafkih & B. Raouyane, “Forecasting of the epidemiological situation: Case of COVID-19 in Morocco”, J. Nig. Soc. Phys. Sci. textbf4 (2022) 843. https://doi.org/10.46481/jnsps.2022.843

T. H. Le, “Forecasting value at risk and expected shortfall with mixed”, Int J Forecast. 36 (2022) 1362. https://doi.org/10.1016/j.ijforecast.2020.01.008

Y. Wei, Q. Yu, J. Liu & Y. Cao, “Hot money and China’s stock market volatility: Further evidence using the GARCH–MIDAS model”, Physica A: Statistical Mechanics and its Applications 492 (2018) 923. https://doi.org/10.1016/j.physa.2017.11.022

A. Amendola, V. Candila & G. M. Gallo, “Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model”, Econom Stat. 20 (2021) 12. https://doi.org/10.1016/j.ecosta.2020.11.001

L. Renato, F. Meng & L. Godeiro, “Quantile forecasting with mixedfrequency data”, Int J Forecast. 36 (2020) 1149. https://doi.org/10.1016/j.ijforecast.2018.09.011

E. Ghysels & H. Qian, “Estimating MIDAS regressions via OLS with polynomial parameter profiling”, Econom Stat. 9 (2019) 1. https://doi.org/10.1016/j.ecosta.2018.02.001

E. Ghysels, V. Kvedaras & V. Zemlys-Balevi?cius, “Mixed data sampling (MIDAS) regression models”, Handbook of Statistics 42 (2020) 117. https://doi.org/10.1016/bs.host.2019.01.005

E. Ghysels, V. Kvedaras & V. Zemlys, “Mixed frequency data sampling regression models: The R Package midasr”, Journal of Statistical Software 72 (2016) 14. https://doi.org/10.18637/jss.v072.i04

G. Kapetanios & F. Papailias, “Big data & macroeconomic nowcasting: Methodological review”, Economic Statistics Centre of Excellence, National Institute of Economic and Social Research (2018). https://escoe-website.s3.amazonaws.com/wp-content/uploads/2020/07/13161005/ESCoE-DP-2018-12.pdf

Y. Zhang, C. L. Yu & H. Li, “Nowcasting GDP using dynamic factor model with unknown number of factors and stochastic volatility: A Bayesian approach”, Econom Stat. 24 (2022) 75. https://doi.org/10.1016/j.ecosta.2021.08.009

C. Foroni, M. Marcellino & D. Stevanovic, “Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis”, Int J Forecast. 38 (2021) 596. https://doi.org/10.1016/j.ijforecast.2020.12.005

A. Richardson, T. V. F. Mulder & T. Vehbi, “Nowcasting New Zealand GDP using machine learning algorithms”, IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, Bank for International Settlements 50 (2018) 23. https://www.bis.org/ifc/publ/ifcb50 15.pdf

V. Umarani, A. Julian & J. Deepa, “Sentiment analysis using various machine learning and deep learning techniques”, J. Nig. Soc. Phys. Sci. 3 (2021) 308. https://doi.org/10.46481/jnsps.2021.308

G. Ramadani, M. Petrovska & V. Bucevska, “Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia”, South East European Journal of Economics and Business 16 (2021) 43. https://doi.org/10.2478/jeb-2021-0013

S. M. Eds & R. Goebel, Multiple-aspect of semantic trajectories, First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD, W¨urzburg, Germany Proceedings (2019). https://doi.org/10.1007/978-3-030-38081-6

C. Challu, K. G. Olivares, G. Welter & A. Dubrawski, “DMIDAS: Deep mixed data sampling regression for long multi-horizon time series forecasting”, (2021). https://doi.org/10.48550/arXiv.2106.05860

K. Benidis et al., “Neural forecasting : Introduction and literature overview”, (2020). https://doi.org/10.1145/3533382

R. K. B. Navas, S. Prakash, and T. Sasipraba, “Artificial neural network based computing model for wind speed prediction: A case study of Coimbatore, Tamil Nadu, India”, Physica A: Statistical Mechanics and its Applications 542 (2020) 123383. https://doi.org/10.1016/j.physa.2019.123383

H. Mo, J. Wang & H. Niu, “Exponent back propagation neural network forecasting for financial cross-correlation relationship”, Expert Syst Appl. 53 (2016) 106. https://doi.org/10.1016/j.eswa.2015.12.045

Q. Xu, K. Deng, C. Jiang, F. Sun & X. Huang, “Composite quantile regression neural network with applications”, Expert Syst Appl. 76 (2017) 129. https://doi.org/10.1016/j.eswa.2017.01.054

A. J. Cannon, “Neural networks for probabilistic environmental prediction: Conditional Density Estimation Network Creation and Evaluation (CaDENCE) in R”, Comput Geosci. 41 (2012) 126. https://doi.org/10.1016/j.cageo.2011.08.023

S. Galeshchuk, “Neural networks performance in exchange rate prediction”, Neurocomputing 172 (2016) 446. https://doi.org/10.1016/j.neucom.2015.03.100

M. Stevanovi´c, S. Vuji?ci´c, and A. M. Gaji´c, “Gross domestic product estimation based on electricity utilization by artificial neural network”, Physica A: Statistical Mechanics and its Applications 489 (2018) 28. https://doi.org/10.1016/j.physa.2017.07.023

W. Zhang, H. Quan, and D. Srinivasan, “An improved quantile regression neural network for probabilistic load forecasting”, IEEE Trans Smart Grid 10 (2019) 4425. https://doi.org/10.1109/TSG.2018.2859749

S. Asimakopoulos, J. Paredes, and T. Warmedinger, “Forecasting fiscal time series using mixed frequency data”, ECB Working Paper 1550 (2013) 1. https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1550.pdf

T. Alam, “Forecasting exports and imports through artificial neural network and autoregressive integrated moving average”, Decision Science Letters 8 (2019) 249. https://doi.org/10.5267/j.dsl.2019.2.001

F. X. Diebold & R. S. Mariano, “Comparing predictive accuracy”, Journal of Business and Economic Statistics 20 (2002) 134. https://doi.org/10.1198/073500102753410444

Published

2023-11-13

How to Cite

Improving forecasting accuracy using quantile regression neural network combined with unrestricted mixed data sampling. (2023). Journal of the Nigerian Society of Physical Sciences, 5(4), 1394. https://doi.org/10.46481/jnsps.2023.1394

Issue

Section

Original Research

How to Cite

Improving forecasting accuracy using quantile regression neural network combined with unrestricted mixed data sampling. (2023). Journal of the Nigerian Society of Physical Sciences, 5(4), 1394. https://doi.org/10.46481/jnsps.2023.1394