Photocatalytic and antibacterial activities of green-mediated Khaya senegalensis-silver nanoparticles and oxidized carbon nanotubes


  • A. H. Labulo Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • A. D. Terna Department of Chemistry, Federal University of Technology, PMB 1526, Owerri, Imo State, Nigeria
  • O. F. Oladayo Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • H. Ibrahim Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • N. S. Tanko Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • R. A. Ashonibare Durable Crops Research Department, Nigerian Stored Products Research Institute, P.M.B. 1489, Ilorin, Kwara State, Nigeria
  • J. D. Opeyemi Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • Z. Tywabi-Ngeva Department of Chemistry, Faculty of Science, Centre for Rubber Science and Technology, Nelson Mandela University, Gqeberha, South Africa, 6001.


Khaya senegalensis, silver nanoparticles, carbon nanotubes, photocatalytic, antibacterial activity


This study investigated the photocatalytic and antibacterial activities of plant-mediated silver nanoparticles (AgNPs) from a medicinal plant extract of Khaya senegalensis (K. senegalensis) and oxygen functionalized carbon nanotubes (oCNTs), respectively. The CNTs were functionalized using acid treatment. The green synthesized AgNPs from K. senegalensis (KS-AgNPs) and oCNTs were characterized by UV–Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission emission microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The formation of KS-AgNPs was confirmed by the UV–Vis absorption spectra, which showed an absorption band at 427 nm with a color change from yellow to brown. The morphology of KS-AgNPs was spherical in shape, with an average particle size of 9.30 nm. The FTIR analyses revealed distinctive functional groups, such as, hydroxyl (O-H), amines (N-H), and carbonyl (C-O), which were directly involved in the synthesis and stability of AgNPs. The XRD spectra was distinctive with five intense peaks at 2theta angles of 38.12°, 44.28°, 64.43°, 77.48°, and 81.54o while oCNTs gave intense peaks at 2theta angles of 26.43o, 42.36o, 44.46o, 54.51o, 59.98o, and 77.40o. The photocatalytic property of green synthesized KS-AgNPs was determined to be 40.7 % higher than that of oCNTs when applied for treatment of industrial waste water. The ability of green-mediated KS-AgNPs to inhibit against gram-positive and gram-negative bacteria was observed to be that gram (-) bacteria (E. coli) was more susceptible to KS-AgNPs than the gram (+) bacteria (S. aureus), in which case their susceptibility was least in oCNTs for both bacteria, respectively.


A. U. Rahman, A. U. Khan, Q. Yuan, Y. Wei, A. Ahmad, S. Ullah, Z. U. H. Khan, S. Shams, M. Tariq & W. Ahmad, “Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug-resistant engineered E. coli QH4” Journal of Photochemistry & Photobiology, B: Biology 193 (2019) 31, 2019.01.018.

M. A. Awad, A. A. Hendi, K. M. Ortashi, B. Alzahrani, D. Soliman, A. Alanazi, W. Alenazi, R. M. Taha, R. Ramadan, M. El-tohamy, N. Almasoud & T. S. Alomar, “Sensors and Actuators A : Physical Biogenic synthesis of silver nanoparticles using Trigonella foenum-graecum seed extract : Characterization, photocatalytic and antibacterial activities”, Sensors & Actuators: A. Physical 323 (2021) 112670,

K. Chand, D. Cao, D. E. Fouad, A. H. Shah, A. Q. Dayo, K. Zhu, M. N. Lakhan & G. M. Shu, “Green synthesis, characterization, and photocatalytic application of silver” Arabian Journal of Chemistry 13 (2020) 8248,

H. M. Mehwish, M. S. R. Rajoka, Y. Xiong, H. Cai, R. M. Aadil, Q. Mahmood, Z. He & Q. Zhu, “Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification”, Journal of Environmental Chemical Engineering 9 (2021) 105290,

B. Thomas, B. S. M. Vithiya, T. A. A. Prasad, S. B. Mohamed, C. M. Magdalane, K. Kaviyarasu & M. Maaza, “Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Passiflora edulis”, Journal of Nanoscience and Nanotechnology 19 (2019) 2640,

Z. Noohpisheh, H. Amiri, S. Farhadi & A. Mohammadi-gholami, l P Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 240 (2020) 118595,

M. Y. Tahir, A. Ahmad, A. A. Alothman, M. S. S. Mushab & S. Ali, “Green Synthesis of Silver Nanoparticles Using Thespesia populnea Bark Extract for Efficient Removal of Methylene Blue ( MB ) Degradation via Photocatalysis with Antimicrobial Activity and for Anticancer Activity 202 (2022) 74.

D. Thatikayala, N. Jayarambabu, V. Banothu, C. B. Ballipalli, J. Park & K. V. Rao, “Biogenic synthesis of silver nanoparticles mediated by Theobroma cacao extract : enhanced antibacterial and photocatalytic activities”, Journal of Materials Science: Materials in Electronics 30 (2019) 17303,

G. A. Molina, R. Esparza, J. L. López-miranda, A. R. Hernández-mart??nez, B. L. España-sánchez, E. A. Elizalde-peña & M. Estevez, “Colloids and Surfaces B : Biointerfaces Green synthesis of Ag nano flowers using Kalanchoe daigremontiana extract for enhanced photocatalytic and antibacterial activities”, Colloids and Surfaces B: Biointerfaces 180 (2019) 141,

V. Ravichandran, S. Vasanthi, S. Shalini, S. A. Ali Shah, M. Tripathy & N. Paliwal, “Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles”, Results in Physics 15 (2019) 102565,

P. E. Fanning & M. A. Vannice, “A DRIFTS study of the formation of surface groups on carbon by oxidation”, Carbon 31 (2013) 721.

J. Yu, B. Yang & B. Cheng, “Noble-metal-free carbon nanotube-Cd1.0Zn0.9S composites for high visible-light photocatalytic H2-production performance”, Nanoscale 4 (2012) 2670.

S. Yick, A. Mai-Prochnow, I. Levchenko, J. Fang, M. Bull, A.B. Murphy & K. Ostrikow, “The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays”, RSC Adv 5 (2014) 5142.

T. Mocan, C.T. Matea, I. Cojocaru, I. Ilie, F.A. Tabaran, F. Zaharie, C. Iancu, D. Bartos & L. Mocan, “Photothermal treatment of human pancreatic cancer using PEGylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism”, J. Cancer 5 (2014) 679.

A. Al Faraj, A.P. Shaik & A. Shaik, Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker”, Int J Nanomed 10 (2014) 157.

H. Wu, H. Shi, H. Zhang, X. Wang, Y. Yang, C. Yu, J. Du & H. Hu, “Prostate stem cell antigen antibody-conjugated multi-walled carbon nanotubes for targeted ultrasound imaging and drug delivery”, Biomaterials 35 (2014) 5369.

P. Wang, Y. Zhao, Y. Tian & X. Jiang, “Multiple strategies to activate gold nanoparticles as potent antibacterial agents”, Nanomed Nanotechnol Biol Med. 12 (2015) 527.

A. Battigelli, C. Me´nard-Moyon, T. Da Ros, M. Prato & A. Bianco, “Endowing carbon nanotubes with biological and biomedical properties by chemical modifications”, Adv Drug Deliv Rev 65 (2013) 1899.

R. Singh & S. Torti, “Carbon nanotubes in hyperthermia therapy”, Adv Drug Deliv Rev 65 (2013) 2045.

P. Wang, Y. Zhao, Y. Tian & X. Jiang, “Multiple strategies to activate gold nanoparticles as potent antibacterial agents” Nanomed Nanotechnol Biol Med 12 (2013) 527.

Y. Huang, I. Lin, C. Chen, Y. Hsu, C. Chang & M. Lee, “Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes”, Nanoscale Res Lett, 8 (2013) 267.

M. Martincic & G. Tobias, “Filled carbon nanotubes in biomedical imaging and drug delivery”, Expert Opin Drug Deliv 12 (2015) 563.

B. Zhang, H. Wang, S. Shen, X. She, W. Shi, J. Chen, Q. Zhang, Y. Hu, Z. Pang & X. Jaing, “Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor”, Biomaterials 79 (2016) 46.

O. Akhavan, M. Abdolahad, Y. Abdi & S. Mohajerzadeh, “Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes”, J. Mater. Chem. 21 (2011) 387.

Y.P.I. Bai, S.J. Lee, T.S. Bae, F. Watari, M. Uo & M.H. Lee, “Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent”, Carbon 49 (2011) 3663.

M. Karimi, N. Solati, A. Estiar, M. A. Hashemkhani, M. Kiani, P. Mohamed, E. Saeidi, A. Taheri, M. Avci, P. Aref, A. R. Amiri, M. Baniasadi & M. R. Hamblin, “Carbon nanotubes part II: A remarkable carrier for drug and gene delivery”, Expert Opin Drug Deliv. 12 (2015) 1089.

H. Veisi, S. Azizi & P. Mohammadi, “Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water”, Journal of cleaner production 170 (2018) 1536.

T. Adak, H. Swain, S. Munda, A. K. Mukherjee, M. K. Yadav, A. Sundaram & P. C. Rath, “Green silver nano-particles: synthesis using rice leaf extract, characterization, efficacy, and non-target effects”, Environmental Science and Pollution Research 28 (2021) 4452.

A. Baker, S. Iram, A. Syed, A. M. Elgorban, A. H. Bahkali, K. Ahmad & J. Kim, “Fruit derived potentially bioactive bioengineered silver nanoparticles”, International Journal of Nanomedicine 16 (2021) 7711.

M. Kumari, C. H. Liu & W. C. Wu, “Gene delivery using layer-by-layer functionalized multi-walled carbon nanotubes: design, characterization, cell line evaluation”, J Mater Sci 56 (2021) 7022,

C. Nie, C. Cheng, L. Ma, J. Deng & C. Zhao, “Mussel-Inspired Antibacterial and Biocompatible Silver-Carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization”, Langmuir 32 (2016) 5955.

C. Nie, Y. Yang, C. Cheng, L. Ma, J. Deng, L. Wang & C. Zhao, “Bioinspired and Biocompatible Carbon Nanotube-Ag Nanohybrid Coatings for Robust Antibacterial Applications”, Acta Biomaterialia 15 (2017) 479,

V. Huong & N. T. Nguyen, “Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract”, Materials Today: Proceedings 42 (2021) 88.

A. K. Varghese, P. P. Tamil, R. Rugmini, P. M. Shiva, K. Kamakshi & K. C. Sekhar, “Green synthesized Ag nanoparticles for bio-sensing and Photocatalytic applications”, ACS omega, 5 (2020) 13123.

A. Rana, S. M. S. Jilani & K. Alhooshani, “Water Quality Characterization Using ASTM Methods in an Undergraduate Advanced Instrumental Analysis Laboratory Course”, Journal of Chemical Education, 98 (2021) 2919.

O. Celebi, K. T. Cinisli & D. Celebi, “Antimicrobial activity of the combination (Nano-Bio) of Artemisia absinthium with copper nanoparticles”, Materials Today: Proceedings 45 (2021) 3809.

E. E. Elemike, D. C. Onwudiwe & A. Chinonso, “Eco-friendly synthesis of silver nanoparticles using Umbrella plant , and evaluation of their photocatalytic and antibacterial activities”, Inorganic and Nano-Metal Chemistry, 50 (2020) 389,

A. H. Labulo, O. A. David & A. D. Terna, “Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluation of its antioxidant and antimicrobial activity” Chemical Papers 76 (2022) 7313,

M. S. Aref & S. S. Salem, “Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture”, Biocatalysis and Agricultural Biotechnology 27 (2020) 101689.

A. Aminu & S. A. Oladepo, “Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury (II) Ions”, Arabian Journal for Science and Engineering 46 (2021) 5477.

M. D. Makut, S. D. Gyar, G. R. I. Pennap & P. Anthony, “Phytochemical screening and antimicrobial activity of the ethanolic and methanolic extracts of the leaf and bark of Khaya senegalensis”, African Journal of Biotechnology, 7 (2008) 1216.

A. H. Labulo, E. T. Adesuji, E. E. Elemike, J. C. Onwuka & J. T. Bamgbose, “Green synthesis and growth kinetics of nanosilver under bio-diversified plant extracts influence”, J. Nanostruct. Chem. 5 (2015) 85.

S. S. Shoor & M. Lodise, “Rapid synthesisof Au, Ag and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth”, Journal of Colloid and Interface Science 275 (2006) 496.

V. Kumar, S. Singh, B. Srivastava, R. Bhadouria & R. Singh, “Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, antiinflammatory, antidiabetic and antibacterial activities”, J. Environ Chem Eng. 7 (2019) 103094,

S. Medina-Cruz, M. Ahmad, B. L. Swami & S. Ikram, “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract”, J Radiat Res Appl Sci 9 (2020) 1.

S. V. Gutorova, V. V. Apyari, V. I. Kalinin, A. A. Furletov, V. V. Tolmacheva, M. V. Gorbunova & S. G. Dmitrienko, “Composable paper-based analytical devices for determination of flavonoids”, Sens Actuators, B Chem 331 (2021) 129398.

L. Stobinski, B. Lesiak, L. Kover, J. Toth, S. Biniak, G. Trykowski & J. Judek, “Multiwall carbon nanotubes purification and oxidation by nitric acid studied by FTIR and electron spectroscopy methods”, J. Alloys and Compounds 501 (2010) 77.

T. Theivasanthi & M. Alagar, “Electrolytic synthesis and characterization of silver nanopowder”, arXiv:1111.0260 [physics.gen-ph] (2011),

S. Raja, A. Kumar, A. Hashmi & Z. Khan, “Silver nanoparticles: preparation, characterization, and kinetics”, Adv Mater Lett 2 (2017) 188.

V. R. Kocharyan, A. S. Gogolev, A. E. Movsisyan, A. H. Beybutyan, S. G. Khlopuzyan & L. R. Aloyan, “X-ray diffraction method for determination of interplanar spacing and temperature distribution in crystals under an external temperature gradient”, J. Appl. Cryst, 48 (2015) 853,

H. Farideh, J. Siestma, J. B. Amarante & M. J. Santofimia, “An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures”, Materials Science and Engineering: A 639 (2015) 208,

Z. G. Que, J. G. T. Torres, H. P. Vidal, M. A. L. Rocha, J. C. A. Pérez, I. C. López, D. D. L. C. Romero, A. E. Reyna, J. G. P. Sosa & A. A. S. Pavón, “Application of silver nanoparticles for water treatment”, In Silver Nanoparticles—Fabrication, Characterization and Applications; Khan, M., Ed. IntechOpen: London, UK (2018).

A. K. Bhardwaj, S. Sundaram, K. K. Yadav & A. L. Srivastav, “An overview of silver nano-particles as promising materials for water disinfection”, Environ. Technol. Innov. 23 (2021) 101721.

S. Yasmin, S. Nouren, H. N. Bhatti, D. N. Iqbal, S. Iftikhar, J. Majeed & H. Rizvi, “Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus”, Green Processing and Synthesis 9 (2020) 87.

Z. Khan, A. Khan, A. Shah, P. Wan, Y. Chen, G. M. Khan, A. U. Khan, K. Tahir, N. Muhammad & H. U. Khan, “Enhanced photocatalytic and electrocatalytic applications of green synthesized silver nanoparticles”, Journal of Molecular Liquids 220 (2016) 248.

S. K. Ghosh, S. Kundu, M. Mandal & T. Pal, “Silver and gold nanoclusters catalyzed reduction of methylene blue by Arsine in a micellar medium”, Langmuir 18 (2002) 8756.

C. Grogger, S. G. Fattakhov, V. V. Jouikov, M. M. Shulaeva & V. S. Reznik, “Primary steps of oxidation and electronic interactions in anodic cleavage of ?,?-diisocyanurate substituted dialkyl disulphides”, Electrochimica Acta 49 (2004) 3185.

L. Chen, C. Y. Zhao, X. H. Zhang, H. Li & J. Yan, “Preparation of composite material H 3 PW 12 O 40 /GO and its photocatalytic degradation of methyl orange, crystal violet, and congo red”, Qiqihar Univ 35 (2019) 68.

T. Karnan & S. A. Selvakumar, “Biosynthesis of ZnO nanoparticles using Rambutan (Nephelium lappaceum) peel extract and their photocatalytic activity on methyl orange dye”, J. Mol. Struct 1125 (2016) 358.

N. Rana, S. Chand & A. K. Gathania, “Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications”, Int. Nano Letter 6 (2016) 91.

P. Nethravathi, M. P. Kumar, D. Suresh, K. Lingaraju, H. Rajanaika, H. Nagabhushana & S. Sharma, “Tinospora cordofolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant, and antibacterial properties”, Mater. Sci. Semicond. Process 33 (2015) 81.

E. Hoseinzadeh, P. Makhdoumi, P. Taha, H. Hossini, J. Stelling, K. M. Amjad & G. Ashraf, “A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms”, Current Drug Metabolism 18 (2017) 120.

K. Gold, B. Slay, M. Knackstedt & A. K. Gaharwar, “Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles”, Advanced Therapeutics 1 (2018) 1700033.

F. Al-Khattaf, “Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks”, Saudi Journal of Biological Sciences 28 (2021) 3624,

L. Blasco, A. Ambroa, R. Trastoy, I. Bleriot, M. Moscoso, L. Fernandez-Garcia, E. Perez-Nadales, F. Fernández-Cuenca, J. Torre-Cisneros & J. Oteo-Iglesias, “In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens”, Science Report 10 (2020) 7163.

S. S. I. Abdalla, H. Katas, F. Azmi & M. F. M. Busra, “Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status”, Current Drug Delivery 17 (2020) 88.

S. Majeed, M. Danish, A. H. B. Zahrudin & G. K. Dash, “Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect”, Karbala Int. J. Mod. Sci. 4 (2018) 86.

M. Zahoor, N. Nazir, M. Iftikhar, S. Naz, I. Zekker, J. Burlakovs, F. Uddin, A. W. Kamran, A. Kallistova & N. Pimenov, “A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment”, Water 13 (2021) 2216,

Q. Guo, X. Shen, Y. Li & S. Xu, “Carbon nanotubes-based drug delivery to cancer and brain”, Curr. Med. Sci. 27 (2017) 635,

S. Merum, J. B. Veluru & R. Seeram, “Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions”, Material Science and Engineering: B 223 (2017) 43,

N. El-Desouky, K. Shoueir, I. El-Mehasseb & M. El-Kemary, “Synthesis of silver nanoparticles using bio valorization coffee waste extract : photocatalytic flow-rate performance, antibacterial activity , and electrochemical investigation”, Biomass Conversion and Biorefinery 4 (2022) 15,



How to Cite

Photocatalytic and antibacterial activities of green-mediated Khaya senegalensis-silver nanoparticles and oxidized carbon nanotubes. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1438.



Original Research

How to Cite

Photocatalytic and antibacterial activities of green-mediated Khaya senegalensis-silver nanoparticles and oxidized carbon nanotubes. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1438.