Isolation, Characterization, Antimicrobial and Theoretical Investigation of Some Bioactive Compounds Obtained from the Bulbs of Calotropisprocera


  • M. E. Khan Department of Chemistry, Federal University Lokoja, Kogi State, Nigeria
  • C. E. Elum Department of Chemistry, Federal University of Agriculture Makurdi, Benue State, Nigeria
  • A. O. Ijeomah Department of Chemistry, Federal University of Agriculture Makurdi, Benue State, Nigeria
  • P. J. Ameji Department of Chemistry, Federal University Lokoja, Kogi State, Nigeria
  • I. G. Osigbemhe Department of Industrial Chemistry, Federal University Lokoja, Kogi State, Nigeria
  • E. E. Etim Department of Chemical Sciences, Federal University Wukari, Taraba State, Nigeria
  • J. V. Anyam Department of Chemistry, Federal University of Agriculture Makurdi, Benue State, Nigeria
  • A. Abel Department of chemistry, College of Education Hong, Adamawa State, Nigeria
  • C. T. Agber Department of Chemistry, Benue State University, Makurdi, Benue State, Nigeria


Phytochemical Screening, Anti-microbial screening, Calotropis procera, Pharmacokinetics


This study characterizes the bioactive molecules from the bulb of Calotropisprocera and investigates the antimicrobial activities of the crude extracts. Theoretical studies on the two isolated compounds in the crude extract were also accomplished.The bulbs were air dried, pulverized, and subjected to extraction procedures by maceration using 500 mL each of normal-hexane, ethyl acetate and methanol. The crude extracts were further tested onmicroorganisms and phytochemical screening using standard procedures. In addition, the bioactive compounds in the extract were screened against DNA gyrase of two Gram negative bacterial species; Escherichia coli and Salmonella typhiusing Molecular Docking simulation techniques and further subjected to ADMET profiling,using the Swiss ADME online server. The Crude ethyl acetate extract has the highest effective activity against Escherichia coli (MIC 2.5mg / mL and MBC/MFC 5mg / mL), Staphylococcus aureus (MIC 2.5mg/mL), Candida albicans, Salmonella typhiand Candida stellafoidea (MIC 5mg/mL). beta-Amyrin acetate and Taraxasterol are the two phytochemicals in the purified white crystalline fractions and were found to fasten to the active sites of DNA gyrase of the Gram negative bacterial species via hydrophobic and hydrogen bond interactions, with binding activity value of -9.6 kcal/mol and -9.5 kcal/mol, respectively. Also, ADMET investigations of the compounds revealed their sound oral bioavailability and excellent pharmacokinetic and toxicity profiles. The findings of this study could provide a platform for discovering safe and potent antibiotics against pathogenic microbes ravaging our society.


B. B. Mishra, & V. K. Tiwari, “Natural products: An evolving role in future drug discovery”, Eur. J. Med. Chem. 46 (2011) 4769.

J. Rey-Ladino, A. G. Ross, A. W. Cripps, D. P. McManus, & R. Quinn, “Natural products and the search for novel vaccine adjuvant”, Vaccine 29 (2011) 6464.

G. M. Cragg, & D. J. Newman, “Biodiversity: A continuing source of novel drug leads”, Pure Appl. Chem. 77 (2005) 7.

B. Haefner, “Drugs from the deep: Marine natural products as drug candidates”, Drug Discov. Today 8 (2003) 536.

M. S. Butler, “The role of natural product in chemistry in drug discovery”, Journal of Natural Product chemistry 67 (2004) 2141.

D. A. Dias, S. Urban, & U. Roessner, “A historical overview of natural products in drug discovery”, Metabolites 2 (2012) 303.

P. M. Dewick, “Medicinal Natural Products: A Biosynthentic Approach”, 2nd. John Wiley and Son; West Sussex, UK, (2002).

R. A. Maplestone, M. J. Stone, & D. H. Williams, “The evolutionary role of secondary metabolites- A review”, Gene 115 (1992) 151.

S. M. Colegate, R. J. Molyneux, “Bioactive Natural Products: Detection, Isolation and Structure Determination”, CRC Press; Boca Raton, FL, USA, (2008).

R. M. I. Sabrin, A. M. Gamal, A. S. Lamiaa, M. Y. B. Laetitia, K. Robert, T. A. Y. Diaa, “Cytotoxic and Antibacterial Effects of Aqueous Extract of Calotropis procera Latex”, International Journal of Pharmacy And Pharmaceutical Research 16 (2019) 400.

N. Tour, & G. Talele, “Anti-inflammatory and gastromuscal protective effects of Calotropis procera (Asclepiadaceae) stem bark”, J. Nat. Med. 65 (2011) 598, doi:10-1007/s11418-011-0522-1.

H. B. Fernandes, D. L. Machado, J. M. Dias, T. V. Brito, J. A. Batista, R. O. Silva, A. Pereira, G. P. Ferreira, M. V. Ramos, J. V. R. Medeiros, K. S. Aragão, R. A. Ribeiro, A. L. R. Barbosa, & J. S. Oliveira, “Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines”, Revista Brasileira de Farmacognosia 25 (2015) 269.

M. Yelne, P. Sharma, T. Dennis, “Database on medicinal plants used in ayurveda”, central council for research in ayurveda and siddha New Delhi 2 (2000) 69.

S. R. Ibrahim, G. A. Mohamed, L. A. Shaala, L. M. Banuls, G. V. Goietsenoven, R. Kiss, “New ursane-type triterpenes from the root bark of Calotropisprocera”, Phytochem Lett 5 (2012) 490.

H. Shrikant, S. Ashwinikumar, D. Mayur, J. Shreeram, K. Kisan, H. Manish, “Colloids Surf., B: Biointerfaces”, Nat. Med. 95 (2011) 284.

T. T. Talele, A. K. Santosh, & C. R. Alan, “Successful Applications of Computer Aided Drug Discovery: moving Drugs from Concept to the Clinic”, Current Topics in Modern Chemistry 10 (2010) 127.

R. Devi, S. J. Singh, J. Powel, E. A. Fulton, E. Igbinedion, & K. Reels, “Internet-based interventions for secondary prevention of coronary heart disease (Review)”, Cochrane Database of Systematic Reviews 12 (2015) CD009386.

M. Z. Nunes, D. Bernardi, C. A. Baronio, J. Pastinato, M. Baldin, & M. Botton, “A laboratory bioassay method to assess the use of toxic bait on anastrpha fraterculus (Weidemann 1830)”, Neotrop Entomol. 1 (2019) 124.

Y. Liu, M. Kumar, G. G. Katul, & A. Porporato, “Reduced resilience as a potential early warning signal of forest mortality”, Nature Climate Change 9 (2019) 880.

H. L. Malou, C. R. Susana, & M. L. M. Luis, “Current Challenges toward In Vitro Cellular Validation of Inorganic Nanoparticles”, American Chemical Society 28 (2017) 212.

G. Mugumbate, V. Mendes, M. Blaszczyk, M. Sabbah, G. Papadatos, J. Lelievre, L. Ballell, D. Barros, C. Abell, T.L. Blundell, & J.P. Overington, “Target Identification of Mycobacterium tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach”, Sec. Experimental Pharmacology and Drug Discovery 8 (2017) 681,

M. Wójcikowski, P. Ballester, & P. Siedlecki, “Performance of machine-learning scoring functions in structure-based virtual screening”, Scientific Report 7 (2017) 46710,

J. K. Carpenter, L. A. Andrews, S. M. Witcraft, M. B. Powers, J. A. J. Smits, & S. G. Hofmann, “Cognitive behavioral therapy for anxiety and related disorders: A meta-analysis of randomized placebo-controlled trials”, Depress Anxiety 6 (2018) 502, doi: 10.1002/da.22728.

Z. Dutkiewicz, & R. Mikstacka, “Structure-Based Drug Design for Cytochrome P450 Family 1 Inhibitors”, Bioinorg Chem Appl. 2018 (2018) 3924608, doi:10.1155/2018/3924608.

S. Surabhi, & B. Singh, “Computer aided drug design: an overview”, Jddt Internet 8 (2023) 504,

J. P. Ameji, U. Uzairu, G. A. Shallangwa, S. Uba, “Design, pharma-cokinetic profiling, and assessment of kinetic and thermodynamic stability of novel anti-salmonella typhiimidazole analogues’, Bulletin of the National Research Centre 47 (2023) 6,

J. P. Ameji, U. Uzairu, G. A. Shallangwa, S. Uba, “Molecular docking simulation, drug-likeness assessment, and pharmacokinetic study of some cephalosporin analogues against a penicillin-binding protein of Salmonella typhimurium”, The Journal of Antibiotics 6 (2023) 211,

E. Daoud, C. Caimino, M. A. Akeroyd, A. J. Norena, & D. M. Baguley, “The utility of economic measures to quantify the burden of tinnitus in affected individuals: A scoping review”, Pharmacoecon open 6 (2021) 21.

F. Z. Sabri, M. Belarbi, S. Sabri, M. S. A. Muneer, “Phytochemical screening and identification of some compounds from mallow”, J Nat Prod Resour 2 (2012) 512.

L. U. Akacha, M. E. Khan, J. Anyam, J. Igoli, T. A. Anyiin, J. Y. Dikko, “Phytochemical screening and Antimicrobial activity of Bryophyllum pinnatum Extracts”, British Biotechnology Journal 16 (2016) 1.

K. O. Akinyemi, O. Oladapo, C. E. Okwara, C. C. Ibe, K. A. Fasure, “Screening of crude extracts of six medicinal plants used in Southwest Nigerian unorthodox medicine for antimethicillin resistant Staphylococcus aureus activity”, BMC Complementary and Alternative Medicine 5 (2005) 6.

G. H. Shahidi, “Evaluation of antibacterial properties of Iranian medicinal plants against Micrococcus aureus, Serratiamarcescens, Klebsiella pneunomiae and Bordella bronchoseptica”, Asian Journal of Sciences 3 (2004) 82.

J. P. Ameji, U. Uzairu, G. A. Shallangwa, S. Uba, “Obstructing Salmonella typhi’s virulence in eukaryotic cells through design of its SipB protein antagonists”, Journal of Taibah University Medical Sciences 18 (2023) 726e736.

J. P. Ameji, U. Uzairu, G. A. Shallangwa, S. Uba, “Virtual screening of novel pyridine derivatives as effective inhibitors of DNA gyrase (GyrA) of salmonella typhi”, Current Chemistry Letters 12 (2022) 1, DOI:~10.5267/j.ccl.2022.10.002

M. E. Khan, L. M. Bala, M. Maliki, “Phytochemical Analyses of Terminaliaschimperiana (Combretaceae) Root Bark Extract to Isolate Stigmasterol”, Adv. J. Chem. A 2 (2019) 327.

D. Ercil, M. K. Sakar, E. D. Olmo, A. S. Feliciano, “Chemical constituents of Rinariaaucheri”, Turkish Journal of Organic Chemistry 28 (2004) 133.

O. A. Ushie, H. M. Adamu, L. Y. Chindo, “Beta-Amyrin-3- acetate detected in Methanolic extract of Chrysophyllumalbidium”, Journal of Chemical Society of Nigeria 43 (2018) 89.

N. N. Okoye, D. L. Ajaghaka, N. Okeke, E. E. Ilodigwe, C. S. Nworu, & F. C. B. Okoye, “Beta -Amyrin and alpha -amyrin acetate isolated from the stem bark of Alstoniaboonei display profound anti-inflammatory activity”, Journal of pharmaceutical Biology 52 (2014) 1478.

L. Hernandez-Vaquez, S. Mangas, J. Palazon, & A. Navarrro-Ocana, “Valuable medicinal plants and resins: Commercial phytochemicals with bioactive properties”, Ind. Crop. prod. 31 (2010) 476.

W. F. Reynold, J. F. Sawyer, R. G. Enrique, L. I. Escobar, M. A. Chavez, J. N. Schoolery, “Total assignment of the spectrum of taraxasteryl acetate by 13 C - 13 C connectivity experiments and determination of the stereochemistry of taraxasterol by X- ray diffraction”, Canadian journal of chemistry 63 (1985) 1048.

E. R. Shakurova, T. I Parfenova, R. S. Sufiyarva, A. Z. Khalilova, V. R. Khmetora, S. A. Bashkator, “Synthesis and anti-inflammatory activity of acyl derivatives of taraxasterol”, Pharmaceutical chemistry Journal 42 (2008) 319.

K. Sharma, & R. Zafar, “Occurrence of taraxerol and taraxasterolin medicinal plants”, Pharmacognosy Review 9 (2015) 19.

Y. Wang, J. Xing, Y. Xu, N. Zhou, J. Peng, Z. Xiong, X. Liu, X. Luo, C. Luo, K. Chen, & M. Zheng, “In silico ADME/T modelling for rational drug design”, Q Rev. Biophys. 48 (2015) 488.

G. M. Levin, “P-glycoprotein: why this drug transporter may be clinically important”, Curr Psychiatry 11 (2012) 38.

T. S. Maliehe, P. H. Tsilo, & J. S. Shandu, “Computational Evaluation of ADMET Properties and Bioactive Score of Compounds from Encephalar-tosferox”, Pharmacogn J. 12 (2020) 1357.

M. F. Khan, M. A. Bari, M. K. Islam, M. S. Islam, M. S. Kayser, N. Nahar, M. Al-Faruk, & M. A. Rashid, “The natural anti-tubercular agents: In silico study of physicochemical, pharmacokinetic and toxicological properties”, J. App. Pharm. Sci. 7 (2017) 034.



How to Cite

Isolation, Characterization, Antimicrobial and Theoretical Investigation of Some Bioactive Compounds Obtained from the Bulbs of Calotropisprocera. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1576.



Original Research

How to Cite

Isolation, Characterization, Antimicrobial and Theoretical Investigation of Some Bioactive Compounds Obtained from the Bulbs of Calotropisprocera. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1576.