Carbon (IV) oxide adsorption efficiency of functionalized HKUST-1, IRMF-1, and UiO-66 metal organic frameworks

Authors

  • Abdullahi Moyosore Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia | Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia | Chemistry Department, Federal College of Education Katsina, P.M.B 2041, Katsina State, Nigeria
  • Haslina Ahmad Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia | Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia | Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
  • Muhammad Alif Muhammad Latif Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia | bIntegrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia | Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
  • Mostafa Yousefzadeh Borzehandani Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia | Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
  • Mohd Basyaruddin AbdulRahman Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia | Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
  • Emilia Abdelmalek Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia | Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia

Keywords:

CO2, HKUST-1, MOF-5, MOFs, molecular simulation, UiO-66

Abstract

The ever-increasing consumption of fossil fuels to meet up with the global economic and industrial energy needs has led to climatic change due to uncontrollable emission of a major greenhouse gas (CO2). As a way of mitigating the amount of CO2 in the atmosphere, search for effective and efficient solid adsorbent has been at the front burner of current scientific research. A class of solid adsorbent known as metal organic frameworks (MOFs) have demonstrated immense potentials for CO2 adsorption due to its porous, high thermal and chemical stability, high versatility and ease of production. Upon functionalization, the adsorption efficiency of this class of materials was found to improve tremendously. In this review, the CO2 capture and sequestration potentials of three MOFs (UiO-66, HKUST-1, and MOF-5) and their composites were investigated in the search for economical, stable, and highly selective novel adsorbents for CO2 adsorption.

Dimensions

J. N. Knudsen, J. N. Jensen, P. J. Vilhelmsen & O. Biede, “Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents”, Energy Procedia 1 (2009) 783. https://doi:10.1016/j.egypro.2009.01.104.

A. B. Rao, & E. S. Rubin, “A Technical, economic, and environmental assessment of amine based CO2 capture technology for power plant greenhouse gas control”, Environmental Science & Technology 36 (2002) 4467. https://doi.org/10.1021/es0158861.

G. Yang, J. Yu, S. Peng, K. Sheng, & H. Zhang, “Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption”, Polymers (Basel), 12 (2022) 370. https://doi.org/10.3390/ polym12020370.

S. Kammerer, I. Borho, J. Jung, & M. S. Schmidt, “Review: CO2 capturing methods of the last two decades”, Int. J. Environ. Sci. Technol 20 (2023) 8087. https://doi.org/10.1007/s13762-022-04680-0

P. Madejski, K. Chmiel, N. Subramanian & T. Kus, “Methods and Tech-´ niques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies”, Energies 15 (2022) 887. https://doi.org/10.3390/en15030887

E. S. Sanni, E. R. Sadiku & E. E. Okoro, “Novel Systems and Membrane Technologies for Carbon Capture”, Int J Chem Eng. 2021 (2021) 1. https: //doi.org/10.1155/2021/6642906.

N. A. A Qasem, R. Ben-Mansour, & M. A. Habib, “An efficient CO2 adsorptive storage using MOF-5 and MOF-177”, Appl. Energy 210 (2018) 317. https://doi.org/10.1016/j.apenergy.2017.11.011.

O. M. Yaghi, & J. L. C. Rowsell, “Strategies for hydrogen storage in metaleorganic frameworks”, Angew Chem Int Ed. 44 (2005) 4670. https: //doi.org/10.1002/anie.200462786.

H. Li, M. Eddaoudi, M. O’Keeffe & O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework”, Nature 402 (1999) 276. https://doi.org/10.1038/46248

G. B. Damas, L. T. Costa, R. Ahuja & C. M. Araujo, “Understanding carbon dioxide capture on metal-organic frameworks from first-principles theory: The case of MIL-53(X), with X = Fe3+, Al3+, and Cu2+,” Journal of Chemical Physics, 155 (2021) 024701. https://doi.org/10.1063/5. 0054874.

M. Ding, R. W. Flaig, H. L. Jiang & O. M. Yaghi, “Carbon capture and conversion using metalorganic frameworks and MOF-based materials,” Chemical Society Reviews 48 (2019) 2783. https://doi.org/10.1039/ c8cs00829a.

L. S. Lai, Y. F. Yeong, A. C. Ani, K. K. Lau & A. M. Shari “synthesis parameters on the formation of zeolitic imidazolate framework 8 (ZIF8) nanoparticles for CO2 adsorption”. Part. Sci. Technol, 32 (2014) 520. https://doi.org/10.1080/02726351.2014.920445.

S. Wang, W. Yao, J. Lin, Z. Ding, & X. Wang, “Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions”, Angew. Chem. Int. Ed. 53 (2014) 1034. https://doi.org/10.1002/ anie.201309426.

L. Mathivathanan, J. Torres-King, J. N. Primera-Pedrozo, O. J. GarciaRicard, A. J. Hernandez-Maldonado, J. A. Santana & R. G. Raptis, “Selective CO2 adsorption on metal-organic frameworks based on trinuclear Cu3-pyrazolato complexes: An experimental and computational study”, Cryst. Growth Des. 13 (2013) 2628. https://doi.org/10.1021/cg400382k.

Z. Xiang, S. Leng, & D. Cao, “Functional group modification of metal– organic frameworks for CO2 capture”, J. Phys. Chem. C. 116 (2012) 10573. https://doi.org/10.1021/jp3018875.

N. Gargiulo, A. Peluso & D. Caputo, “MOF-based adsorbents for atmospheric emission control: A review Process”, Process 8 (2020) 1. https://doi.org/10.3390/pr8050613.

M. Ding & H.L. Jiang, “Improving water stability of metal–organic frameworks by a general surface hydrophobic polymerization” CCS Chem 3 (2021) 2740. https://doi.org/10.31635/ccschem.020.202000515.

Y. Cao, Y. Zhao, F. Song, & Q. Zhong, “Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity”, J. Energy Chem. 23 (2014) 468. https://www.jenergychem.com/EN/ 10.1016/S2095-4956(14)60173-X.

K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, & J. R. Long, “Carbon dioxide capture in metal– organic frameworks”, Chem. Rev. 112 (2012) 724. https://doi.org/10. 1021/cr2003272.

M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst, & A. Wagener, “Adsorptive Separation of Isobutene and Isobutane on Cu3(BTC)2”, Langmuir, 24 (2008) 8634. https://doi.org/10.1021/ la8008656.

S. Loera-Serna, M. A. Oliver-Tolentino, M. de Lourdes Lopez- N´ u´ nez,˜ A. Santana-Cruz, A. Guzman-Vargas, R. Cabrera-Sierra, H. I. Beltr´ an,´ & J. Flores, “Electrochemical behavior of [Cu3(BTC)2] metal−organic framework: The effect of the method of synthesis”, J. Alloys Compd., 540 (2012) 113. https://doi.org/10.1016/j.jallcom.2012.06.030.

V. Celis-Arias, S. Loera-Serna, H. I. Beltran, J. C.´ Alvarez-Zeferino, E.´ Garrido & R. Ruiz-Ramos, “The fungicide effect of HKUST-1 on Aspergillus niger, Fusarium solani and Penicillium chrysogenum”, New J. Chem., 42 (2018) 5570. https://doi.org/10.1039/C8NJ00120K.

T. Toyao, M. J. Styles, T. Yago, M. M. Sadiq, R. Ricco, K. Suzuki, & Y.´ Horiuchi, M. Takahashi, M. Matsuoka & P. Falcaro, “Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic”, Cryst.Eng.Comm. 19 (2017) 4201. https://doi.org/10.1039/C7CE00390K.

Y. Liu, P. Ghimire, & M. Jaroniec, “Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents”, J. Colloid Interface Sci., 535 (2019) 122. https://doi.org/10.1016/j.jcis.2018.09.086.

Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang, X. Peng, & Z. Lin, “Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries”, Nat. Commun, 8 (2017) 14628. https://doi.org/ 10.1038/ncomms14628.

A. R. Millward, & O. M. Yaghi, “Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature”, J. Am. Chem. Soc. textbf127 (2005) 17998. https://doi.org/10.1021/ja0570032

Q. M. Wang, D. Shen, M. Bulow, M. L. Lau, S. Deng, F. R. Fitch & N.¨ O. Lemcoff, & J. Semanscin, “Metallo-organic molecular sieve for gas separation and purification”, Microporous Mesoporous Mater 55 (2002) 217. https://doi.org/10.1016/S1387-1811(02)00405-5.

M. Yoon, K. Suh, S. Natarajan & K. Kim, “Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids”, Angew. Chem. Int. Ed. 52 (2013) 2688. https://doi.org/10.1002/anie. 201206410.

K. Cendrowski, W. Kukulka, T. Kedzierski, S. Zhang & E. Mijowska, “Poly(vinylidene fluoride) and Carbon Derivative Structures from Eco-Friendly MOF-5 for Supercapacitor Electrode Preparation with Improved Electrochemical Performance”, Nanomaterials 8 (2018) 890. https://doi. org/10.3390/nano8110890.

N. Motakef-Kazemi, S. A. Shojaosadati & A. Morsali, “Evaluation of the effect of nanoporous nanorods Zn2(bdc)2(dabco) dimension on ibuprofen loading and release”, J. Iran. Chem. Soc. 13 (2016) 1205. https://doi.org/ 10.1007/s13738-016-0835-9.

H. A. Ozen & B. Ozturk, “Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals”, Sep. Purif. Technol. 211 (2019) 514. https://doi.org/10.1016/j.seppur.2018.09.052.

J. Ethiraj, E. Albanese, B. Civalleri, J. G. Vitillo, F. Bonino, S. Shavan, G. C. Shearer, K. P. Lillerud & S. Bodiga, “Carbon Dioxide Adsorption in Amine-Functionalized Mixed-Ligand Metal–Organic Frameworks of UiO-66 Topology”, Chem. Sus. Chem. 7 (2014) 3382. https://doi.org/10. 1002/cssc.201402694

M. Taddei, UiO-66: a Case Study Metal-Organic Framework, Catalysis Class (529-0502-00L). Retrieved at 22 July, 2023 from https://ethz.ch/content/dam/ethz/special-interest/chab/icb/ van-bokhoven-group-dam/coursework/Catalysis/2017/UiO-66.pdf.

K. C. Chong, S. O. Lai, S. K. Mah, S. H. Thiam, W. C. Chong, S. H. Shuit, S. S. Lee & W. Chong, “A Review of HKUST-1 Metal-Organic Frameworks in Gas Adsorption”, IOP Conf. Ser.: Earth Environ. Sci. 1135 (2023) 012030. https://doi.org/10.1088/1755-1315/1135/1/012030.

L. D. O’Neill, H. Zhang & D. Bradshaw, “Macro/microporous MOF composite beads”, Journal of materials Chemistry, 20 (2010) 27. https: //doi.org/10.1039/c0jm00515k.

T. B. Lee, D. Kim, D. H. Jung, S. B. Choi, J. H. Yoon, J. Kim, K. Choi & S. H. Shoi, “Understanding the mechanism of hydrogen adsorption into metal organic frameworks”, Catalysis Today 120 (2007) 330. https: //doi.org/10.1016/j.cattod.2006.09.030.

C. P. Raptopoulou, “Metal-Organic Frameworks: Synthetic Methods and Potential Applications”, Materials 14 (2021) 310. https://doi.org/10.3390/ ma14020310.

C. Dey, T. Kundu, B. P. Biswal, A. Mallick, & R. Banerjee, “Crystalline metal-organic frameworks (MOFs): Synthesis, structure and function”, Acta Cryst. 70 (2014) 3. https://doi.org/10.1107/S2052520613029557.

M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, & M. Khatami, “A review on metal-organic frameworks: Synthesis and applications”, Trends Anal. Chem. 118 (2019) 401.https://doi.org/10.1021/acsomega.2c05310.

E. Biemmi, S. Christian, N. Stock, & T. Bein, “High-throughput screening of synthesis parameters in the formation of the metalorganic frameworks MOF-5 and HKUST-1”, Microporous Mesoporous Mater, 117 (2009)

https://doi.org/10.1016/j.micromeso.2008.06.040.

F. Millange, R. E. Osta, M. E. Medina, & R. I. Walton, “A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal-organic framework”, Cryst. Eng. Comm. 13 (2011) 103. https://doi.org/10.1039/C0CE00530D.

P. Li, F. Cheng, W. Xiong, & Q. Zhang, “New synthetic strategies to prepare metal-organic frameworks”, Inorg. Chem. Front. 5 (2018) 2693. https://doi.org/10.1039/C8QI00543E

P. P. Bag, G. P. Singh, S. Singha & G. Roymahapatra, “Synthesis of Metal-Organic Frameworks (MOFs) and Their Biological, Catalytic and Energetic Applications: A Mini Review”, Eng. Sci. 13 (2021) 1 https: //dx.doi.org/10.30919/es8d1166

M. D. Allendorf, V. Stavila, M. Witman, C. K. Brozek & C. H. Hendon, “What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors”, J. Am. Chem. Soc. 143 (2021) 6705. https://doi.org/10.1021/jacs.0c10777.

J. Beamish-Cook, K. Shankland, C. A. Murray & P. Vaqueiro, “Insights into the Mechanochemical Synthesis of MOF-74”, Cryst. Growth Des. Cryst. 21 (2021) 3047. https://doi.org/10.1021/acs.cgd.1c00213.

D. Chen, J. Zhao, P. Zhang & S. Dai, “Mechanochemical synthesis of metal–organic frameworks”, Polyhedron, 62 (2018) 59. https://doi.org/ 10.1016/j.poly.2019.01.024.

T. Tsuzuki, “Mechanochemical synthesis of metal oxide nanoparticles”, Commun. Chem. 4 (2021) 143. https://doi.org/10.1038/ s42004-021-00582-3.

J.H. Lee, Y. Ahn & S-Y. Kwak, “Facile Sonochemical Synthesis of Flexible Fe-Based Metal−Organic Frameworks and Their Efficient Removal of Organic Contaminants from Aqueous Solutions”, ACS Omega 7 (2022) 23213. https://doi.org/10.1021/acsomega.2c01068.

C. Vaitsis, G. Sourkouni & C. Argirusis, “Sonochemical synthesis of MOFs. In book: Metal-Organic Frameworks for Biomedical Applications”, (2020) pp. 223-244. https://doi.org/10.1016/ B978-0-12-816984-1.00013-5.

C. Mottillo & T. Friscic, “Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber”, Molecules, 22 (2017) https://doi.org/10.3390/molecules22010144.

Y. Li, G. Wen, J. Li, Q. Li, H. Zhang, B. Tao & J. Zhang, “Synthesis and shaping of metal–organic frameworks: a review”, Chemical Communications 58 (2022) 11488. https://doi.org/10.1039/D2CC04190A

X. Zhang, F. Li, J. Ren, H. Feng, X. Hou, & C. Ma, “Synthesis of Metal Organic Framework Material MIL-101”, IOP Conf. Series: Earth and Environmental Science, 295 (2019) 032022. https://doi:10.1088/1755-1315/ 295/3/032022.

O. K. Akeremale, O. T. Ore, A. A. Bayode, H. Badamasi, J. A. Olusola, & S. S. Durod, “Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review”, Results in Chemistry 5 (2023) 100866. https://doi.org/10.1016/j.rechem.2023.100866.

V. V. Butova, M.A. Soldatov, A. A. Guda, K.A. Lomachenko, & C. Lambert, “Metal-organic frameworks: structure, properties, methods of synthesis and characterization”, Russian Chemical Reviews 85 (2016) 280. https://doi.org/10.1070/RCR4554.

F-X. Coudert, & H.A. Fuchs. Computational characterization and prediction of metal–organic framework properties. Coord. Chem. Rev. 307 (2015) 211. https://doi.org/10.1016/j.ccr.2015.08.001,

L. J. Wang, H. Deng, H. Furukawa, F. Gandara, K. E. Cordova, D. Peri, & O. M. Yaghi, “Synthesis and Characterization of Metal−Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals”, Inorganic Chemistry, 53 (2014) 5881. https//doi.org/10.1021/ic500434a.

B. Kirchner, & F. Neese, “Theoretical chemistry developments: from electronic structure to simulations”, Phys. Chem. Chem. Phys. 17 (2015) 14268. https://doi.org/10.1039/C5CP90040A.

T. Ito, S. Ibrahim,& I. Grabowska, “Chemical-force microscopy for materials characterization”, TrAC Trends in Analytical Chemistry 29 (2010) 225. https://doi.org/10.1016/j.trac.2009.12.008.

D. N. G. Krishna, & J. Philip, “Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges”, Applied Surface Science Advances 12 (2022) 100332. https://doi.org/10.1016/j.apsadv.2022.100332.

M. J. Davies, “Detection and characterization of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods”, Methods 109 (2016). https://doi.org/10.1016/j.ymeth.2016.05.013

A. Ali, Y. W. Chiang & R. M. Santos, “X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions”, Minerals 12 (2022) 205. https: //doi.org/10.3390/min12020205.

M. Salarian, A. Ghanbarpour, M. Behbahani, S. Bagheri & A. Bagheri, “A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid-phase extraction of ultra-traces of lead(II) ions”, Microchimica Acta 181 (2014) 4605 https://doi.org/10.1007/ s00604-014-1200-2.

Z. Li, D. Pei, R. Tian, C. Lu, “Screening the Specific Surface Area for Metal-Organic Frameworks by Cataluminescence”, Chemosensors 11 (2023) 292. https://doi.org/10.3390/chemosensors11050292.

E. Brunner & M. Rauche, “Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks”, Chem. Sci. 11 (2020) 4297. https://doi.org/10.1039/D0SC00735H.

B. Kirchner & F. Neese, “Theoretical chemistry developments: from 10

electronic structure to simulations”,Phys. Chem. Chem. Phys. 17 (2015) 14268. https://doi.org/10.1039/C5CP90040A.

C. W. Chidieberea, C. E. Durua, & J. P. C. Mbagwu, “Application of computational chemistry in chemical reactivity: a review” J. Nig. Soc. Phys. Sci. 3 (2021) 292. https://doi.org/10.46481/jnsps.2021.347.

R. Evins, “A review of computational optimisation methods applied to sustainable building design”, Renewable and Sustainable Energy Reviews 22 (2013) 230. https://doi.org/10.1016/j.rser.2013.02.004.

J. P. Ameji, A. Uzairu, G. A. Shallangwa, & S. Uba, “Design, pharmacokinetic profiling, and assessment of kinetic and thermodynamic stability of novel anti-Salmonella typhi imidazole analogues”, Bulletin of the National Research Centre 47 (2023) 6. https://doi.org/10.1186/ s42269-023-00983-5.

J. P. Ameji, A. Uzairu, G. A. Shallangwa & S. Uba, “Obstructing Salmonella typhi’s virulence in eukaryotic cells through design of its SipB protein antagonists”, Journal of Taibah University Medical Sciences 18 (2023) 726. https://doi.org/10.1016/j.jtumed.2022.12.010.

V. Limongelli, “Ligand Binding Free Energy and Kinetics Calculation in 2020. Wiley interdisciplinary reviews”, Computational Molecular Science 10 (2020) 1 https://doi.org/10.1002/wcms.1455.

X. Ma, “Development of Computational Chemistry and Application of Computational Methods”, Journal of Physics, Conference Series 2386 (2022) 012005. https://doi:10.1088/1742-6596/2386/1/012005.

K. D. Vogiatzis, A. Mavrandonakis, W. Klopper, & G. E. Froudakis, “Ab initio Study of the Interactions between CO2 and N-Containing Organic Heterocycles”, ChemPhysChem 10 (2009) 374. https://doi.org/10.1002/ cphc.200800583.

N. Qin, Q. Min, B. Li, M. Ma, K. Shao, W. Hu, “Progress in Computational Chemistry”, Interdisciplinary Science Letters 02 (2018) 111. https://doi.org/10.12677/isl.2018.24021.

M. Orio, D.A. Pantazis, & F. Neese, “Density functional theory”, Photosynthesis Research 102 (2009) 443. https://doi.org/10.1007/ s11120-009-9404-8.

Z. Tian, S. Dai & D. E. Jiang, “What can molecular simulation do for global warming? Wiley Interdisciplinary Reviews”, Computational Molecular Science, 6 (2016) 173. https://doi.org/10.1002/wcms.1241.

V. Ekberg, L.M. Samways, M.M. Ignjatovic, W.J. Essex, & U. Ryde,´ “Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks”, ACS Phys. Chem Au (2) (2022) 247. https://doi.org/10.1021/acsphyschemau. 1c00052.

L. Chen, P.S. Reiss, S.Y. Chong, D. Holden, K.E. Jelfs, T. Hasell, M.A. Little, A. Kewley, M.E. Briggs, A. Stephenson & K.M. Thomas, et al.,“Separation of rare gases and chiral molecules by selective binding in porous organic cages”, Nature Materials 13 (2014) 954. https: //doi.org/10.1038/nmat4035.

F.X. Coudert, & A.H. Fuchs, “Computational characterization and prediction of metal–organic framework properties”, Coord. Chem. Rev. 307 (2015) 211. https://doi.org/10.1016/j.ccr.2015.08.001.

D. Bedrov, P. J. Piquemal, O. Borodin, D.A. MacKerell, B. J. Roux & C. Schroder, “Molecular Dynamics Simulations of Ionic Liquids and Elec-¨ trolytes Using Polarizable Force Fields”, Chemical Reviews 119 (2019) 7940. https://doi.org/10.1021/acs.chemrev.8b00763.

X. Lin, W. Zeng, M. Liu, Q. Zhong, T. Su, L. Gong, & Y. Liu, “Aminomodified Mg-MOF-74: Synthesis, characterization and CO2 adsorption performance”, Environ. Eng. Res. 28 (2023) 210569. https://doi.org/10. 4491/eer.2021.569.

G. Yang, J. Yu, S. Peng, K. Sheng, & H. Zhang, “Poly(ionic liquid)Modified Metal Organic Framework for Carbon Dioxide Adsorption” Polymers 12 (2020) 370. https://doi.org/doi:10.3390/polym12020370.

H. Lyu, O.I. Chen, N. Hanikel, M.I. Hossain, R. W. Flaig, et al., “Carbon Dioxide Capture Chemistry of Amino Acid Functionalized MetalOrganic Frameworks in Humid Flue Gas”, Journal of the American

Chemical Society, 144 (2022) https://www.osti.gov/pages/servlets/purl/ 1841534.

Y. Zhao, H. Ge, Y. Miao, J. Chen, & W. Cai, “CO2 capture ability of Cu-based metal-organic frameworks synergized with amino acidfunctionalized layered materials”, Catalysis today, 356 (2020) 604. https: //doi.org/10.1016/j.cattod.2019.12.016.

F.P. Kinik, C. Altintas, V. Balci, B. Koyuturk, A. Uzun, & S. Keskin, “[BMIM][PF6] Incorporation Doubles CO2 Selectivity of ZIF-8: Elucidation of Interactions and Their Consequences on Performance”, ACS Appl. Mater. Interfaces, 8 (2016) 30992. https://doi.org/10.1021/acsami. 6b11087.

J. Cortes-Suarez, V. Celis-Arias, H. I. Beltran, A. Tejeda-Cruz, I.A. Ibarra, J.E. Romero-Ibarra, E. Sanchez-Gonzalez & S. Loera-Serna “Synthesis and Characterization of an SWCNT@HKUST-1 Composite:Enhancing the CO2 Adsorption Properties of HKUST-1”. ACS Omega 4 (2019) 5275. https://doi.org/10.1021/acsomega.9b00330.

R.H. Abid, S. Jin, H. Ang & S. Wang, “Amino-functionalized Zr-MOF nanoparticles for adsorption of CO2 and CH4”, International Journal of Smart and Nano Materials 4 (2013) 72. https://doi.org/10.1080/19475411. 2012.688773.

A. Koutsianos, E. Kazimierska, R.A. Barron, M. Taddei, & E. Andreoli, “A new approach to enhancing the CO2 capture performance of defective UiO-66 via post-synthetic defect exchange”, Dalton Transactions 48 (2019) 3349. https://doi.org/10.1039/C9DT00154A.

Q. Huang, J. Ding, X. Huang, X. Wei, & W. Wang, “Experimental and Computational Investigation of CO2 Capture on Mix-ligand Metalorganic FrameworkUiO-66”, Energy Procedia 105 (2017) 4395. https: //doi.org/10.1016/j.egypro.2017.03.933.

M. Arjmandi, M. P. Chenar, M. Peyravi, M. Jahanshahi, A. Arjmandi & A. S. Rad, “Interpreting the CO2 Adsorption on Functionalized Organic Group of IRMOF-1: A B3LYP Density Functional Theory based Study”, International Journal of Engineering; IJE TRANSACTIONS C: Aspects 31 (2018) 1473. https://doi.org/10.5829/ije.2018.31.09c.01.

G. Yang, J. Yu, S. Peng, K. Sheng & H. Zhang, “Poly(ionic liquid)Modified Metal Organic Framework for Carbon Dioxide Adsorption”, Polymers, 12 (2020) 370. https://doi.org/10.3390/polym12020370.

M. Neves, E. Gkaniatsou, F. Nouar, M. L. Pinto & C. Serre, “MOF industrialization: a complete assessment of production costs”, Faraday Discussions, 231 (2021) 326. https://doi.org/10.1039/D1FD00018G.

J. Duan, Y. Pan, G. Liu & W. Jin, “Metal-organic framework adsorbents and membranes for separation applications”, Current Opinion in Chemical Engineering 20 (2018) 122. https://doi.org/10.1016/j.coche.2018.04. 005.

X. Zhang, B. Wang, A. Alsalme, S. Xiang, Z. Zhang, & B. Chen, “Design and applications of water-stable metal-organic frameworks: status and challenges”, Coordination Chemistry Reviews 423 (2020) 213507. https: //doi.org/10.1016/j.ccr.2020.213507/

T. Wang, H. Zhu, Q. Zeng & D. Liu, “Strategies for Overcoming Defects of HKUST-1 and Its Relevant Applications”, Advanced Materials Interface, 6 (2019) 1900423. https://doi.org/10.1002/admi.201900423.

Z. Li, & H. C. Zeng, “Armored MOFs: enforcing soft microporous MOF nanocrystals with hard mesoporous silica”, J. Am. Chem. Soc. 136 (2014) 5631. https://doi.org/10.1021/ja409675j.

X-L. Lv, S. Yua, L-H. Xie, H. F. Darke, Y. Chen, T. He, C. Dong, B. Wang, Y-Z. Zhang, J-R. Li, & H-C. Zhou “Ligand rigidification for enhancing the stability of metal–organic frameworks”, J. Am. Chem. Soc. 141 (2019) 10283. https://doi.org/10.1021/jacs.9b02947.

Published

2024-01-01

How to Cite

Carbon (IV) oxide adsorption efficiency of functionalized HKUST-1, IRMF-1, and UiO-66 metal organic frameworks. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1673. https://doi.org/10.46481/jnsps.2024.1673

How to Cite

Carbon (IV) oxide adsorption efficiency of functionalized HKUST-1, IRMF-1, and UiO-66 metal organic frameworks. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1673. https://doi.org/10.46481/jnsps.2024.1673