Lattice Dynamics and thermodynamic Responses of XNbSn Half-Heusler Semiconductors: A First-Principles Approach

https://doi.org/10.46481/jnsps.2021.174

Authors

  • O. E. Osafile Department of Physics, Federal University of PetroleumResources, PMB 1221, Effurun, Nigeria
  • O. N. Nenuwe Department of Physics, Federal University of PetroleumResources, PMB 1221, Effurun, Nigeria

Keywords:

Density functional theory; Density functional perturbation theory; Half-Heusler semiconductor; Lattice dynamics; Thermodynamic properties; Phonon dispersions

Abstract

In this work, we have evaluated how CoNbSn, IrNbSn, and RhNbSn half Heusler alloys respond to temperature change and the accompanying lattice vibrations as a cubic crystal. There are reports in the literature for CoNbSn with which we compared our result; there are, however, no reports for the other two alloys except for their Debye temperature obtained via machine learning, and our results compare well. Considering that results in the literature for IrNbSn and RhNbSn are scanty, we first computed the alloys' structural and electronic properties to establish their structural stability using the density functional theory and generalised gradient approximation as implemented in the quantum espresso computational suite. We confirmed the equilibrium lattice structure by exploring the three possibilities for a half Heusler alloy and fitting the results to the state's Murnaghan equation. The negative formation energies obtained supports experimental simulation of the alloys. Results from the lattice dynamics and thermodynamic evaluation show that the alloys favour ionic bonding and are ductile. The Debye temperature positions IrNbSn to be the most promising material for thermoelectric application because it has the least Debye temperature; hence it is supposed to have the lowest thermal conductivity. The Dulong-Petit law is obeyed at high temperature as expected. The phonon dispersion and density of states show that the d orbitals of Co and Nb are the significant contributors to the dispersions at both the acoustic and optical modes of the alloys.

Dimensions

K. Özdogan, I. Galanakis, E. ?a?ioglu, B. Akta?, "Search for half-metallic ferrimagnetism in V-based Heusler alloys Mn2VZ (Z= Al, Ga, In, Si, Ge, Sn)", Journal of Physics: Condensed Matter 18 (2006) 2905.

M. Shaughnessy, L. Damewood, C. Y. Fong, L. H. Yang, C. Felser, "Structural variants and the modified Slater-Pauling curve for transition-metal-based half-Heusler alloys", Journal of Applied Physics 113 (2013) 043709.

P. J. Webster, "Heusler alloys", Contemporary Physics 10 (1969) 559.

O. E. Osafile, P. O. Adebambo, G. A. Adebayo, "Elastic constants and observed ferromagnetism in inverse Heusler alloy Ti2CoAs using kjpaw pseudopotentials: A first-principles approach", Journal of Alloys and Compounds 722 (2017) 207.

L. Bainsla, K. G. Suresh, "Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications", Applied Physics Reviews 3 (2016) 031101.

F. Heusler, W. Starck & E. Haupt, "Uber magnetische maganlegierun", Verh DPG 5 (1903) 220.

F. Heusler, "Magnetisch-chemische studien", Verh DPG 5 (1903) 219.

R. A. De Groot, F. M. Mueller, P. G. Van Engen, and K. H. J. Buschow, "New class of materials: half-metallic ferromagnets." Physical Review Letters 50 (1983) 2024.

I. Galanakis, K. Özdoan, B. Akta & Eaolu, "Effect of doping and disorder on the half metallicity of full Heusler alloys", Applied physics Letters 89 (2006) 042502.

G. Rogl, P. Sauerschnig, Z. Rykavets, V. V. Romaka, P. Heinrich, B. Hinterleitner, A. Grytsiv, E. Bauer, and P. Rogl, "(V, Nb)-doped half Heusler alloys based on {Ti, Zr, Hf} NiSn with high ZT." Acta Materialia 131 (2017) 336.

S. Bhattacharya, A. L. Pope, R. T. Littleton IV, Terry M. Tritt, V. Ponnambalam, Y. Xia, S. J. Poon, "Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn x Sb x", Applied Physics Letters 77 (2000) 2476.

P. O. Adebambo, O. E. Osafile, J. A. Laoye, M. A. Idowu, G. A. Adebayo, "Electronic fitness function, effective mass and thermoelectric properties of Rh-based (-ScTe;-TiSb;-VSn) alloys for thermoelectric generator applications." Computational Condensed Matter 26 (2021) e00523.

G. Xing, Jifeng Sun, Yuwei Li, Xiaofeng Fan, Weitao Zheng, David J. Singh, "Electronic fitness function for screening semiconductors as thermoelectric materials." Physical Review Materials 1 (2017) 065405.

Dusastre Vincent, ed. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. World Scientific, 2010.

Y. Nishino, S. Deguchi, U. Mizutani, "Thermal and transport properties of the Heusler-type Fe 2 VAl 1 x Ge x (0 x 0.20) alloys: Effect of doping on lattice thermal conductivity, electrical resistivity, and Seebeck coefficient", Physical Review B 74 (2006) 115115.

E. Mohamed Hamid, Dhafer Abdulameer Shnawah, Mohd Faizul Mohd Sabri, Suhana Binti Mohd Said, Masjuki Haji Hassan, Mohamed Bashir Ali Bashir, Mahazani Mohamad, "A review on thermoelectric renewable energy: Principle parameters that affect their performance." Renewable and sustainable energy reviews 30 (2014) 337.

L. Huang, Qinyong Zhang, Bo Yuan, Xiang Lai, Xiao Yan, Zhifeng Ren, "Recent progress in half-Heusler thermoelectric materials." Materials Research Bulletin 76 (2016) 107.

Z, Liu, Shuping Guo, Yixuan Wu, Jun Mao, Qing Zhu, Hangtian Zhu, Yanzhong Pei, Jiehe Sui, Yongsheng Zhang, Zhifeng Ren, "Design of high?performance disordered half?Heusler thermoelectric materials using 18 electron rule." Advanced Functional Materials 29, no. 44 (2019): 1905044.

K. Xia, Yintu Liu, Shashwat Anand, G. Jeffrey Snyder, Jiazhan Xin, Junjie Yu, Xinbing Zhao, Tiejun Zhu, "Enhanced Thermoelectric Performance in 18?Electron Nb0. 8CoSb Half?Heusler Compound with Intrinsic Nb Vacancies." Advanced Functional Materials 28, no. 9 (2018): 1705845.

L. Huang, Qinyong Zhang, Yumei Wang, Ran He, Jing Shuai, Jianjun Zhang, Chao Wang, Zhifeng Ren, "The effect of Sn doping on thermoelectric performance of n-type half-Heusler NbCoSb." Physical Chemistry Chemical Physics 19, no. 37 (2017): 25683-25690.

C. Fu, Shengqiang Bai, Yintu Liu, Yunshan Tang, Lidong Chen, Xinbing Zhao, Tiejun Zhu, "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials." Nature communications 6, no. 1 (2015): 1-7.

T. Zhu, Yintu Liu, Chenguang Fu, Joseph P. Heremans, Jeffrey G. Snyder, Xinbing Zhao, "Compromise and synergy in high?efficiency thermoelectric materials." Advanced materials 29, no. 14 (2017): 1605884.T. Fang, S. Zheng, T. Zhou, L. Yan, and P. Zhang, Phys. Chem. Chem. Phys., 19, 4411 (2017).

X. Zhang, Yuanxu Wang, Yuli Yan, Chao Wang, Guangbiao Zhang, Zhenxiang Cheng, Fengzhu Ren, Hao Deng, Jihua Zhang, "Origin of high thermoelectric performance of FeNb 1? x Zr/Hf x Sb 1? y Sn y alloys: A first-principles study." Scientific reports 6, no. 1 (2016): 1-13.

C. Yu, Tie-Jun Zhu, Rui-Zhi Shi, Yun Zhang, Xin-Bing Zhao, Jian He, "High-performance half-Heusler thermoelectric materials Hf1? x ZrxNiSn1? ySby prepared by levitation melting and spark plasma sintering." Acta Materialia 57, no. 9 (2009): 2757-2764.

G. Joshi, Xiao Yan, Hengzhi Wang, Weishu Liu, Gang Chen, Zhifeng Ren, "Enhancement in thermoelectric figure?of?merit of an N?type half?Heusler compound by the nanocomposite approach." Advanced Energy Materials 1, no. 4 (2011): 643-647.

X. Yan, Xiao, Weishu Liu, Hui Wang, Shuo Chen, Junichiro Shiomi, Keivan Esfarjani, Hengzhi Wang, Dezhi Wang, Gang Chen, Zhifeng Ren, "Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf 1? x Ti x CoSb 0.8 Sn 0.2." Energy & Environmental Science 5, no. 6 (2012): 7543-7548.

K. Kaur, Ranjan Kumar, "Ti based half Heusler compounds: A new on the screen with robustic thermoelectric performance." Journal of Alloys and Compounds 727 (2017): 1171-1177.

S. Joseph Poon, Di Wu, Song Zhu, Wenjie Xie, Terry M. Tritt, Peter Thomas, Rama Venkatasubramanian, "Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials." Journal of Materials Research 26, no. 22 (2011): 2795.Joshi, G., He, R., Engber, M., Samsonidze, G., Pantha, T., Dahal, E., ... & Ren, Z. (2014). NbFeSb-based p-type half-Heuslers for power generation applications. Energy & Environmental Science, 7(12), 4070-4076.

W. G. Spitzer, H. Y. Fan, "Determination of optical constants and carrier effective mass of semiconductors." Physical Review 106, no. 5 (1957): 882.

M. Zahedifar, Peter Kratzer, "Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory." Physical Review B 97, no. 3 (2018): 035204.

M. Zeeshan, Harish K. Singh, Jeroen van den Brink, Hem C. Kandpal, "Ab initio design of new cobalt-based half-Heusler materials for thermoelectric applications." Physical Review Materials 1, no. 7 (2017): 075407.

T. Fang, Shuqi Zheng, Hong Chen, Hui Cheng, Lijun Wang, Peng Zhang, "Electronic structure and thermoelectric properties of p-type half-Heusler compound NbFeSb: a first-principles study." RSC advances 6, no. 13 (2016): 10507-10512.

S. Chadov, Xiaoliang Qi, Jürgen Kübler, Gerhard H. Fecher, Claudia Felser, Shou Cheng Zhang, "Tunable multifunctional topological insulators in ternary Heusler compounds. Nature materials 9, no. 7 (2010): 541-545.

A. A.Mubarak, S. Tariq, F. Hamioud, B. O. Alsobhi, "Thermal, electro-magnetic and thermoelectric investigation of CoNb1? xTixSn (x= 0, 0.75, 0.5, 1) half-Heusler alloy." Journal of Physics: Condensed Matter 31, no. 50 (2019): 505705.

P. Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials." Journal of physics: Condensed matter 21, no. 39 (2009): 395502.

P. Giannozzi, Oliviero Andreussi, Thomas Brumme, Oana Bunau, M. Buongiorno Nardelli, Matteo Calandra, Roberto Car et al., "Advanced capabilities for materials modelling with Quantum ESPRESSO." Journal of Physics: Condensed Matter 29, no. 46 (2017): 465901.

G. Kresse, Daniel Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method." Physical review b 59, no. 3 (1999): 1758.

K. Burke, John P. Perdew, Matthias Ernzerhof, "Why semilocal functionals work: Accuracy of the on-top pair density and importance of system averaging." The Journal of chemical physics 109, no. 10 (1998): 3760-3771.

J. P. Perdew, Kieron Burke, Matthias Ernzerhof, "Generalized gradient approximation made simple." Physical review letters 77, no. 18 (1996): 3865.

H. J. Monkhorst, James D. Pack, "Special points for Brillouin-zone integrations." Physical review B 13, no. 12 (1976): 5188.

M. Marzari, David Vanderbilt, "Maximally localized generalized Wannier functions for composite energy bands." Physical review B 56, no. 20 (1997): 12847.

F. D. Murnaghan, "The compressibility of media under extreme pressures." Proceedings of the national academy of sciences of the United States of America 30, no. 9 (1944): 244.

F. Birch, "Finite elastic strain of cubic crystals." Physical review 71, no. 11 (1947): 809.

F. D. Murnaghan, "Finite deformations of an elastic solid." American Journal of Mathematics 59, no. 2 (1937): 235-260.

A. Kokalj, "XCrySDen—a new program for displaying crystalline structures and electron densities." Journal of Molecular Graphics and Modelling 17, no. 3-4 (1999): 176-179.

A. Dal Corso, "Elastic constants of beryllium: a first-principles investigation." Journal of Physics: Condensed Matter 28, no. 7 (2016): 075401.

S. Baroni, Stefano De Gironcoli, Andrea Dal Corso, Paolo Giannozzi. "Phonons and related crystal properties from density-functional perturbation theory." Reviews of modern Physics 73, no. 2 (2001): 515.

W. Voigt, Lehrbuch der Kristallphysik, (Teubner and Leipzig),(1928): p. 739

A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

R. Hill, "The elastic behaviour of a crystalline aggregate." Proceedings of the Physical Society. Section A 65, no. 5 (1952): 349.

M. Born, Kun Huang. Dynamical theory of crystal lattices. Clarendon press, 1954.

F. Mouhat, François-Xavier Coudert, "Necessary and sufficient elastic stability conditions in various crystal systems." Physical review B 90, no. 22 (2014): 224104.

J. F. Nye, “Physical properties of crystals: their representation by tensors and matrices” Oxford university press, 1985.

J. Carrete, Wu Li, Natalio Mingo, Shidong Wang, Stefano Curtarolo, "Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling." Physical Review X 4, no. 1 (2014): 011019.

A. Yildirim, Husnu Koc, Engin Deligoz, "First-principles study of the structural, elastic, electronic, optical, and vibrational properties of intermetallic Pd2Ga." Chinese Physics B 21, no. 3 (2012): 037101.

S. F. Pugh, "XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45, no. 367 (1954): 823-843.

X-Q. Chen, Haiyang Niu, Dianzhong Li, Yiyi Li, "Modeling hardness of polycrystalline materials and bulk metallic glasses", Intermetallics 19 (2011) 1275.

K. A. Matori, M. H. M. Zaid, H. A. A. Sidek, M. K. Halimah, Z. A. Wahab, M. G. M. Sabri, "Influence of ZnO on the ultrasonic velocity and elastic moduli of soda lime silicate glasses", International Journal of Physical Sciences 5 (2010) 2212.

S. I. Ranganathan, Martin Ostoja-Starzewsk, "Universal elastic anisotropy index." Physical Review Letters 101 (2008) 055504.

D. M. David, "Computational alchemy: the search for new superhard materials." MRS bulletin 23 (1998) 22.

X. Jiang, Jijun Zhao, Xin Jiang, "Correlation between hardness and elastic moduli of the covalent crystals", Computational materials science 50 (2011) 2287-2290.

A. L. Orson, "A simplified method for calculating the Debye temperature from elastic constants", Journal of Physics and Chemistry of Solids 24 (1963) 909-917.

Published

2021-05-29

How to Cite

O. E. Osafile, & O. N. Nenuwe. (2021). Lattice Dynamics and thermodynamic Responses of XNbSn Half-Heusler Semiconductors: A First-Principles Approach. Journal of the Nigerian Society of Physical Sciences, 3(2), 121–130. https://doi.org/10.46481/jnsps.2021.174

Issue

Section

Original Research