Approximate bound state solutions of the fractional Schr\"{o}dinger equation under the spin-spin-dependent Cornell potential

Authors

  • E. Omugbe Department of Physics, University of Agriculture and Environmental Sciences, Umuagwo, Imo State, Nigeria
  • M. Abu-Shady Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Egypt
  • E. P. Inyang Department of Physics, National Open University of Nigeria, Jabi, Abuja, Nigeria

Abstract

In this work, the approximate bound state solutions of the fractional Schr\"{o}dinger equation under a spin-spin-dependent Cornell potential are obtained via the convectional Nikiforov-Uvarov approach. The energy spectra are applied to obtain the mass spectra of the heavy mesons such as bottomonium, charmonium and bottom-charm. The masses for the singlet and triplet spin numbers increase as the quantum numbers increase. The fractional Schr\"{o}dinger equation improves the mass spectra compared to other theoretic masses. The bottomonium masses agree with the experimental results where percentage errors for fractional parameters of $\beta =1,\alpha =0.97$ and $\beta =1,\alpha =0.50$ were found to be 0.67\% and 0.49\% respectively. The respective percentage errors of 1.97\% and 1.62\% for fractional parameters of $\beta =1,\alpha =0.97$ and $\beta =1,\alpha =0.50$ were obtained for charmonium meson. The results indicate that the potential curves coupled with the fractional parameters account for the short-range gluon exchange between the quark-antiquark interactions and the linear confinement phenomena which is associated with the quantum chromo-dynamic and phenomenological potential models in particle and high-energy physics.

Dimensions

D. L. Bernardo, C. C. Bastos & A. C. Pavao, “Hadron resonances as rovibrational states”, Chinese Phys. C 45 (2021) 084104. https://iopscience.iop.org/article/10.1088/1674-1137/ac012b/meta

Z. Y. Fang, Y. R. Wang & C. Q. Pang, “$Qoverline{Q}$ ($Q$ $mathrm{in }$ $mathrm{{}$b, c$mathrm{}}$) spectroscopy using the modified Rovibrational model”, Phys. Part. Nuclei Lett. 20 (2023) 589. https://doi.org/10.1134/S1547477123040714

E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane & T. M. Yan, “Spectrum of charmed quark antiquark bound states”, Phys. Rev. Lett. 34 (1975) 369. https://doi.org/10.1103/PhysRevLett.34.369

D. B. Lichtenberg, “Energy levels of quarkonia in potential models”, In ternational Journal of Modern Physics A 2 (1987) 1669. https://doi.org/10.1142/S0217751X87000879

W. Buchmuller & S. H. H. Tye , “Quarkonia and quantum chromodynam ics”, Phys. Rev. D 24 (1981) 132. https://doi.org/10.1103/PhysRevD.24.132

S. N. Gupta & E. F. Radford, “Quarkonium spectra and quantum chro modynamics”, Phys. Rev. D 26 (1982) 3305. https://doi.org/10.1103/PhysRevD.26.3305

K. B. Bhaghyesh, V. Kumar & A. P. Monteiro, “Heavy quarkonium spec tra and its decays in a nonrelativistic model with hulthen potential”, J. Phys. G: Nucl. Part. Phys. 38 (2011) 085001. https://doi.org/10.1088/0954-3899/38/8/085001

H. Chen, J. Zhang, Y. B. Dong & P. N. Shen, “Heavy quarkonium spec tra in a quark potential model”, Chinese Physics Letters 18 (2001) 1558. https://doi.org/10.1088/0256-307X/18/12/305

M. Abu-Shady & S.Y. Ezz-Alarab, “Trigonometric rosen–morse poten tial as a quark-antiquark interaction potential for meson properties in the non-relativistic quark model using EAIM” Few-Body Syst. 60 (2019) 66. https://doi.org/10.1007/s00601-019-1531-y

E. P. Inyang, P. C. Iwuji, J. E. Ntibi, E. Omugbe, E. A. Ibanga & E.S.William, “Quark-antiquark study with inversely quadratic Yukawa potential using Nikiforov-Uvarov-Functional analysis method”, East Eur. J. Phys. 2 (2022) 51. https://doi.org/10.26565/2312-4334-2022-2-05

E. Omugbe, O. E. Osafile, I. B. Okon, E. P. Inyang, E. S. William & A. Jahanshir, “Any l- state energy of the spinless salpter equation under the cornell potential by the WKB approximation method:An application to mass spectra of mesons”, Few-Body Syst.63 (2022) 7. https://doi.org/10.1007/s00601-021-01705-1

E. P. Inyang, E. P. Inyang, E. S. William & E. E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark antiquark systems in a non-relativistic framework”, Jordan J. Phys. 14 (2021) 345. https://doi.org/10.47011/14.4.8 [13] I. O. Akpan, E. P. Inyang & E. S. William, “Approximate solutions of the Schrodinger equation with Hulthen-Hellmann potentials for a Quarkonium system”, Rev. Mex. Fis. 67 (2021) 490. https://doi.org/10.31349/revmexfis.67.482

E. P. Inyang, A. N. Ikot, E.P. Inyang, I. O. Akpan, J. E. Ntibi, E. Omugbe & E. S. William, “Analytic study of thermal properties and masses of heavy mesons with quarkonium potential”, Result in Physics 39 (2022) 105754. https://doi.org/10.1016/j.rinp.2022.105754

M. Abu-Shady, H. M. Fath-Allah, “The effect of extended Cornell po tential on heavy and heavy-light meson masses using series method ”, J. Egypt. Math. Soc. 23 (2019) 156. https://arxiv.org/abs/1908.09131

E. E. Ibekwe, U. S. Okorie, J. B. Emah, E. P. Inyang & S. A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion metho”, Eur. Phys. J. Plus 87 (2021) 136. https://doi.org/10.1140/epjp/s13360-021-01090-y

R. Kumar, R. M. Singh, S. B. Bhahardivaj, R. Rani & F. Chand, “An alytical solution to the Schrodinger equation for a generalized Cor nell potential and its applications to diatomic molecules and heavy mesons”, Mod. Phys. Lett. A 37 (2022) 2250010. https://doi.org/10.1142/S0217732322500109

A. G. Bhaghyesh, “Charmonium properties using the Discrete variable representation (DVR) method”, Advances in High Energy Physics 2021 (2021) 9991152. https://doi.org//10.1155/2021/9991152

F. Brau, and C. Sernay, “The three-dimensional Fourier grid Hamiltonian method”, Journal of computational physics 139 (1998) 136. https://doi.org/10.1006/jcph.1997.5866

V. Mateu, P. G. Ortega, D. R. Entem, F. Fernadez, V. Mateu, P. G. Ortega, D. R. Entem & F. Fernandez, “Calibrating the na¨?ve Cornell model with NRQCD”, Eur. Phys. J. C 79 (2019) 323. https://doi.org/10.1140/epjc/s10052-019-6808-2

S. Patel, P. C. Vinodkumar & S. Bhatnagar, “Decay rates of charmonia within a quark-antiquark confining potential”, Chin. Phys. C 40 (2016) 053102. https://doi.org/10.1088/1674-1137/40/5/053102

M. S. Ali, A. M. Yasser, G. S. Hassan & C. C. Moustakidis, “Spectra of Quark-antiquark bound states via two derived QCD potentials”, Quantum Phys. Lett. 5 (2016) 7. https://arxiv.org/abs/1502.06569

V. Kher & A. K. Rai, “Spectroscopy and decay properties of char monium” Chin. Phys. C 42 (2018) 083101. https://doi.org/10.1088/1674-1137/42/8/083101

P. Gupta & I. Mehrotra, “Study of heavy Quarkonium with energy depen dent potential”, J. Mod. Phys. 3 (2012) 1536. http://dx.doi.org/10.4236/jmp.2012.310189

G. R. Boroun & H. Abdolmalki, “Variational and exact solutions of the wavefunction at origin (WFO) for heavy quarkonium by using a global potential”, Phys. Scr. 80 (2009) 065003. https://doi.org/10.1088/0031-8949/80/06/065003

H. Mansour, A. Gamal & M. Abolmahassen, “Spin splitting spectroscopy of heavy Quark and Antiquarks systems”, Adv. High Energy Phys. 2020 (2020) 2356436. https://doi.org/10.1155/2020/2356436

S. Godfrey & K. Moats, “Bottomonium mesons and strategies for their observation”, Phys. Rev. D 92 (2015) 054034. https://doi.org/10.1103/PhysRevD.92.054034

T. Barnes, S. Godfrey & E. S. Swanson, “Higher Charmonia”, Phys. Rev.D 72 (2005) 054026. https://doi.org/10.1103/PhysRevD.72.054026

L. Cao, Y. C. Yang & H. Chen, “Charmonium states in QCD-inspired Quark potential model using Gaussian expansion method”, Few-Body Syst. 53 (2012) 327. https://doi.org/10.1007/s00601-012-0478-z

T. Bhavsar, M. Shah & P. C. Vinodkumar, “Status of quarkonia-like neg ative and positive parity states in a relativistic confinement schemetatus of quarkonia-like negative and positive parity states in a relativistic con finement”, Eur. Phys. J. C 78 (2018) 227. https://doi.org/10.1140/epjc/s10052-018-5694-3

W. J. Deng, H. Liu, L. C. Gui & X. H. Zhong, “Charmonium spectrum and electromagnetic transitions with higher multipole contributions”, Phys. Rev. D 95 (2017) 034026. https://doi.org/10.1103/PhysRevD.95.034026

W. J. Deng, H. Liu, L. C. Gui & X. H. Zhong, “Spectrum and electro magnetic transitions of bottomonium”, Phys. Rev. D 95 (2017) 074002. https://doi.org/10.1103/PhysRevD.95.074002

V. Kher, R. Chaturvedi, N. Devlani & A.K. Rai, “Bottomonium spec troscopy using Coulomb plus linear (Cornell) potential”, Eur. Phys. J. Plus 137 (2022) 357. https://doi.org/10.1140/epjp/s13360-022-02538-5

N. R. Soni, B. R. Johi, R. P. Shah, H. R. Chauhan & J. N. Pandya, “QQ (Q ? {b, c}) spectroscopy using the Cornell potential”, Eur. Phys. J. C 78 (2018) 592. https://doi.org/10.1140/epjc/s10052-018-6068-6

D. Ebert, R. N. Faustov & V. O. Galkin, “Spectroscopy and Regge tra jectories of heavy quarkonia and Bc mesons”, Eur. Phys. J. C 71 (2011) 1825. https://doi.org/10.1140/epjc/s10052-011-1825-9

R. J. Lombard, J. Mars & C. Volpe, “Wave equations of energy dependent potentials for confined systems”, J. Phys. G: Nucl. Part. Phys. 34, (2007) 1879. https://doi.org/10.1088/0954-3899/34/9/002

A. Ahmed, “The search for fractional order in heavy quarkonia spectra”, International Journal of Modern Physics A 34 (2019) 1950054. https://doi.org/10.1142/S0217751X19500544

H. Karayer, D. Demirhan, & F. Buy¨ ukk–l–c¸, “Conformable fractional Nikiforov-Uvarov method”, Communications in Theoretical Physics 66 (2016)12. https://iopscience.iop.org/article/10.1088/0253-6102/66/1/012/meta

M. Abu-Shady, “Quarkonium masses in a hot QCD medium using con formable fractional of the Nikiforov–Uvarov method”, International Jour nal of Modern Physics A 34 (2019) 1950201. https://doi.org/10.1142/S0217751X19502014

M. Abu-Shady & S. Y. Ezz-Alarab, “Conformable fractional of the ana lytical exact iteration method for heavy quarkonium masses spectra” Few Body Systems 62 (2021) 1. https://doi.org/10.1007/s00601-021-01591-7

M. Abu-shady, “Spectra of heavy quarkonia in a magnetized-hot medium in the framework of fractional non-relativistic quark model”, Journal of Theoretical and Applied Physics 16 (2022) 1. http://dx.doi.org/10.30495/jtap.162225

M. Abu-Shady & Mohammed K. A. Kaabar, “A generalized definition of the fractional derivative with applications”, Mathematical Problems in Engineering 2021 (2021) 1. https://doi.org/10.1155/2021/9444803

M. Abu-Shady & Mohammed K. A. Kaabar, “A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady–Kaabar fractional derivative”, Computational and Mathematical Methods in Medicine 2022 (2022) 2138775. http://dx.doi.org/10.1155/2022/2138775

M. Abu-Shady & Etido P. Inyang, “The Fractional Schrodinger Equation with the Generalized Woods-Saxon Potential”, East European Journal of Physics 1 (2023) 63. http://dx.doi.org/10.26565/2312-4334-2023-1-06

M. Abu-Shady & E. M. Khokha, “On prediction of the fractional vibra tional energies for diatomic molecules with the improved Tietz poten tial” Molecular Physics, 120 (2022) e2140720. https://doi.org/10.1080/00268976.2022.2140720

M. Abu-shady & H. M. Fath-Allah, “Masses of single, double, and triple heavy baryons in the hyper-central Quark model by using GF-AEIM”, Advances in High Energy Physics 2022 (2022) 4539308. https://doi.org/10.1155/2022/4539308

R. R. Luz, M. Abu-Shady, G. X. A. Petronilo, A. E. Santana & R. G. G. Amorim, “Fractional effective quark-antiquark interaction in symplec tic quantum mechanics”, Advances in High Energy Physics 2023 (2023) 8366154. https://doi.org/10.1155/2023/8366154

M. Abu-Shady & E. P. Inyang, “Heavy-light meson masses in the frame work of trigonometric rosen-morse potential using the generalized frac tional derivative”, East European Journal of Physics 4 (2022) 80. https://arxiv.org/abs/2209.00566

M. M. Hammad, A. S. H. Yaqut, M. A. Abdel-Khalek & S. B. Doma, “An alytical study of conformable fractional Bohr Hamiltonian with Kratzer potential”, Nuclear Physics A 1015 (2021) 122307. https://doi.org/10.1016/j.nuclphysa.2021.122307

A. F. Nikiforov & V.B. Uvarov, “Special Functions of Mathemati cal Physics” Birkhauser, Basel (1988). ¨ https://link.springer.com/book/10.1007/978-1-4757-1595-8

E. Omugbe, E. P. Inyang, I. J. Njoku, C. Mart´?nez-Flores, A. Jahanshir , I. B. Okon, E.S. Eyube, R. Horchani & C.A. Onate, “Approximate mass spectra and root mean square radii of quarkonia using Cornell poten tial plus spin-spin interactions”, Nuclear Physics A. 1034 (2023) 122653. https://doi.org/10.1016/j.nuclphysa.2023.122653

R.L. Workman et al., “The Review of Particle Physics”, Particle Data Group, Prog.Theor.Exp.Phys. 2022, (2022) 083C01. https://academic.oup.com/ptep/article/2022/8/083C01/6651666

C. Patrignani, “Review of particle physics,” Chinese Physics C 40 (2016) 100001. https://doi.org/10.1088/1674-1137/40/10/100001

C. Pekeris, “The rotation-vibration coupling in diatomic molecules”, Phys. Rev 45 (1934) 98. https://doi.org/10.1103/PhysRev.45.98

M. Abu-Shady, H. M. Mansour & A. I. Ahmadov, “Dissociation of quarkonium in hot and dense media in an anisotropic plasma in the nonrelativistic quark model”, Advances in High Energy Physics 2019 (2019). https://doi.org/10.1155/2019/4785615

M. Abu-Shady & M. Soleiman, “The extended quark sigma model at finite temperature and baryonic chemical potential”, Physics of Particles and Nuclei Letters 10 (2013) 683. https://doi.org/10.1134/S1547477114010026

Published

2024-01-21

How to Cite

Approximate bound state solutions of the fractional Schr\"{o}dinger equation under the spin-spin-dependent Cornell potential. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1771. https://doi.org/10.46481/jnsps.2024.1771

Issue

Section

Physics & Astronomy

How to Cite

Approximate bound state solutions of the fractional Schr\"{o}dinger equation under the spin-spin-dependent Cornell potential. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1771. https://doi.org/10.46481/jnsps.2024.1771