Stagnation point flow of viscous nanofluid towards a shrinking sheet with quadratic buoyancy and thermophoresis influence: convection through porous media

Authors

Keywords:

Nonlinear convection, Nanofluid, Thermophoresis, Darcy law, Stagnation point

Abstract

This study investigates the dynamics of heat and mass transfer, focusing on the impact of nonlinear convection and thermophoresis in the flow of viscous nanofluid towards a shrinking sheet embedded with a porous matrix. To facilitate understanding of the flow behavior, the study employs similarity variables to simplify the resulting nonlinear partial differential equations. Numerical analysis utilizing the collocation method with Legendre polynomials as basis functions reveals distinct distributions of velocity, temperature, and concentration. The results demonstrate that the dimensionless suction coefficient amplifies nanoparticle volume fraction and momentum along the stretching surface. In addition, an increase in internal frictional force leads to heightened injection of heat energy, accelerates the temperature field, and impedes nanoparticle diffusion due to heat absorption. Elevation of convection terms augments momentum, reduces energy dispersion, and enhances nanoparticle diffusion. Moreover, an increase in the dimensionless Eckert number (Ec) correlates with intensified energy and diminished diffusion concentration of the nanoparticle volume fraction.

Dimensions

S. Li, M. Faizan, F. Ali, G. Ramasekhar, T. Muhammad, H. A. E. W. Khalifa & Z. Ahmad, “Modelling and analysis of heat transfer in MHD stagnation point flow of Maxwell nanofluid over a porous rotating disk”, Alexandria Engineering Journal 91 (2024) 237. https://doi.org/10.1016/j.aej.2024.02.002.

Z. Mahmood, K. Rafique, U. Khan, M. Abd El-Rahman & R. Alharbi, “Analysis of mixed convective stagnation point flow of hybrid nanofluid over sheet with variable thermal conductivity and slip Conditions: A Model-Based study”, International Journal of Heat and Fluid Flow 106 (2024) 109296. https://doi.org/10.1016/j.ijheatfluidflow.2024.109296.

Y. O. Tijani, S. D. Oloniiju, M. O. Oni & M. T. Akolade, “Surface dynamics and thermophysical mechanics on Reiner-Philippoff fluid flow”, International Journal of Modern Physics B (2023) 2450339. https://doi.org/10.1142/S0217979224503399.

A. T. Brimmo & M. A. Qasaimeh, “Stagnation point flows in analytical chemistry and life sciences”, RSC advances 7 (2017) 51206. https://doi.org/10.1039/C7RA11155J.

N. S. Khashiie, N. Md Arifin & I. Pop, “Mixed convective stagnation point flow towards a vertical Riga plate in hybrid Cu-Al2O3/water nanofluid”, Mathematics 8 (2020) 912. https://doi.org/10.3390/math8060912.

O. D. Makinde, W. A. Khan & Z. H. Khan, “Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231 (2017) 695. https://doi.org/10.1177/0954408916629506.

A. Shahid, The effectiveness of mass transfer in the MHD Upper-Convected Maxwell fluid flow on a stretched porous sheet near stagnation point: a numerical investigation”, Inventions 5 (2020) 64. https://doi.org/10.3390/inventions5040064.

M. Zaheer, S. Z. Abbas, N. Huang & Y. Elmasry, “Analysis of buoyancy features on magneto hydrodynamic stagnation point flow of nanofluid using homotopy analysis method”, International Journal of Heat and Mass Transfer 221 (2024) 125045. https://doi.org/10.1016/j.ijheatmasstransfer.2023.125045.

G. Kenea & W. Ibrahim, “Nonlinear convection stagnation point flow of Oldroyd-B nanofluid with non-Fourier heat and non-Fick’s mass flux over a spinning sphere”, Scientific Reports 14 (2024) 841. https://doi.org/10.1038/s41598-024-51475-z.

V. B. Awati, A. Goravar & M. Kumar, “Spectral and Haar wavelet collocation method for the solution of heat generation and viscous dissipation in micro-polar nanofluid for MHD stagnation point flow”, Mathematics and Computers in Simulation 215 (2024) 158. https://doi.org/10.1016/j.matcom.2023.07.031.

P. M. Patil & M. Kulkarni, “Nonlinear mixed convective nanofluid flow along moving vertical rough plate”, Revista mexicana de fı́sica 66 (2020) 153. https://doi.org/10.31349/revmexfis.66.153.

A. M. M. Raju, G. S. S. Raju & B. Mallikarjuna, “Unsteady quadratic convective flow of a rotating non-Newtonian fluid over a rotating cone in a porous medium”, International Journal of Advanced Research in Computer Science 8 (2017) 6. https://doi.org/10.26483/ijarcs.v8i6.4474.

A. B. Raju, G. S. S. Raju, B. Mallikarjuna & C. S. K. Raju, “Effect of nonlinear convection and variable properties on Darcy flow of non-Newtonian fluid over a rotating cone”, International Journal of Research Engineering and Application Management 4 (2018) 586. https://doi.org/10.18231/2454-9150.2018.0270.

S. A. Khan, T. Hayat, A. Alsaedi & B. Ahmad, “Heat and mass transfer enhancement in nonlinear mixed convective flow: Buongiorno model and melting heat phenomenon”, International Communications in Heat and Mass Transfer 153 (2024) 107330. https://doi.org/10.1016/j.icheatmasstransfer.2024.107330.

M. T. Akolade, “Numerical approach to second law analysis of a dissipative Carreau fluid dynamic over nonlinear stretching sheet”, International Journal of Ambient Energy 44 (2023) 1427. https://doi.org/10.1080/01430750.2023.2175725.

M. T. Akolade, T. L. Oyekunle, H. O. Momoh & M. M. Awad, “Thermophoretic movement, heat source, and sink influence on the Williamson fluid past a Riga surface with positive and negative Soret-Dufour mechanism”, Heat Transfer 51 (2022) 4228. https://doi.org/10.1002/htj.22497.

A. S. Idowu, M. T. Akolade, T. L. Oyekunle & J. U. Abubakar, “Nonlinear convection flow of dissipative Casson nanofluid through an inclined annular microchannel with a porous medium”, Heat transfer 50 (2021) 3388. https://doi.org/10.1002/htj.22033.

J. O. Olabode, A. S. Idowu, M. T. Akolade & E. O. Titiloye, “Unsteady flow analysis of Maxwell fluid with temperature dependent variable properties and quadratic thermo-solutal convection influence”, Partial Differential Equations in Applied Mathematics. 4 (2021) 100078. https://doi.org/10.1016/j.padiff.2021.100078.

R. Kumar & S. Sood, “Interaction of magnetic field and nonlinear convection in the stagnation point flow over a shrinking sheet”, Journal of Engineering 2016 (2016) 6752520. https://doi.org/10.1155/2016/6752520.

P. M. Patil & H. F. Shankar, “Double-diffusive nonlinear convection dusty fluid flow over a cone under the influence of activation energy”, Indian Journal of Physics, 97 (2023) 2771. https://doi.org/10.1007/s12648-023-02657-4.

A. Alam, D. N. K. Marwat & A. Ali, “Flow of nano-fluid over a sheet of variable thickness with non-uniform stretching (shrinking) and porous velocities”, Advances in Mechanical Engineering 13 (2021) 1. https://doi.org/10.1177/16878140211012913.

S. A. Agunbiade, A. A. Ayoade, T. L. Oyekunle & M. T. Akolade, “Brownian motion and thermophoresis influence in magnetized Maxwell upper-convected stagnation point fluid flow via a stretching porous surface”, Journal of Taibah University for Science 18 (2024) 2301130. https://doi.org/10.1080/16583655.2023.2301130.

V. Ramanjini, G. G.Krishna, M. Ramanuja, H. Kamala & S. R. Mishra, “Unsteady Prandtl nanofluidic flow through stretching sheet due to mixed convection, first-order slip, and chemical reaction”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1140. https://doi.org/10.46481/jnsps.2023.1140.

F. Deba, A. Rahman, Z. Khan, S. Iqbal & N. Sheikh, “Flow of a Williamson fluid over a stretching sheet containing nanoparticles”, International Journal of system Engineering 5 (2021) 13. https://doi.org/10.11648/j.ijse.20210501.12.

B. S. Goud, “Boundary layer and heat transfer Williamson fluid flow over a stretching sheet with Newtonian heating”, Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12 (2021) 1275.

P. Lata, A. Kumar & A. Deepak, “Effect of magnetic field on thermosolutal convection in Jeffery Nanofluid with porous medium”, Porous Media: An International Journal, 14 (2023) 17. https://doi.org/10. 1615/SpecialTopicsRevPorousMedia.202346929.

P. L. Sharma, A. Kumar & G. C. Rana, “Effect of magnetic field on thermosolutal convection in Jeffrey nanofluid with porous medium”, Special Topics & Reviews in Porous Media: An International Journal 14 (2023) 17. https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2023046929.

P. L. Sharma, D. Bains & G. C. Rana, “Effect of variable gravity on thermal convection in Jeffrey nanofluid: Darcy-Brinkman model”, Numerical Heat Transfer, Part B: Fundamentals 85 (2023) 776. https://doi.org/10.1080/10407790.2023.2256970.

D. Yadav, J. Lee & H. H. Cho, “Throughflow and quadratic drag effects on the onset of convection in a Forchheimer-extended Darcy porous medium layer saturated by a nanofluid”, Journal of the Brazilian Society of Mechanical Sciences and Engineering 38 (2016) 2299. https://doi.org/10.1007/s40430-016-0505-y

D. Yadav, “Effect of electric field on the onset of Jeffery fluid convection in a heat-generating porous medium layer”, Pramana 96 (2022) 19. https://doi.org/10.1007/s12043-021-02242-6.

D. Yadav, M. Al-Siyabi, M. K. Awasthi, S. Al-Nadhairi, A. Al-Rahbi, M. Al-Subhi, R. Ragoju & K. Bhattacharyya, “Chemical reaction and internal heating effects on the double diffusive convection in porous membrane enclosures soaked with Maxwell fluid”, Membranes 12 (2022) 338. https://doi.org/10.3390/membranes12030338.

P. L. Sharma, M. Kapalta, A. Kumar, D. Bains, S. Gupta & P. Thakur, “Electrohy drodynamics convection in dielectric rotating Oldroydian nanofluid in porous medium”. Journal of the Nigerian Society of Physical Sciences 5 (2023) 1231. https://doi.org/10.46481/jnsps.2023.1231.

P. L. Sharma, D. Bains & P. Thakur, “Thermal instability of rotating Jeffrey nanofluids in porous media with variable gravity”. Journal of the Nigerian Society of Physical Sciences 5 (2023) 1366. https://doi.org/10.46481/jnsps.2023.1366.

N. Japili, H. Rosali & N. Bachok, “Suction effect on stagnation point flow and heat transfer over an exponentially shrinking sheet in a porous medium”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 73 (2020) 163. https://doi.org/10.37934/arfmts.73.2.163174.

R. Kumar & S. Sood, “Interaction of magnetic field and nonlinear convection in the stagnation point flow over a shrinking sheet”, Journal of Engineering 2016 (2016) 6752520. https://doi.org/10.1155/2016/6752520.

T. L. Oyekunle, M. T. Akolade & S. A. Agunbiade, “Thermal-diffusion and Diffusion-thermo effects on heat and mass transfer in chemically reacting MHD Casson nanofluid with viscous dissipation”, Applications and Applied Mathematics: An International Journal (AAM) 16 (2021) 39. https://digitalcommons.pvamu.edu/aam/vol16/iss1/39.

T. L. Oyekunle, M. T. Akolade & S. A. Agunbiade, “The effect of thermophysical properties on nonlinear thermal-solutal convective flow of Casson nanofluid over an inclined surface with higher order chemical reaction”, Journal of the Serbian Society for Computational Mechanics 16 (2022) 65. https://doi.org/10.24874/jsscm.2022.16.01.06.

C. Y. Wang, “Stagnation flow towards a shrinking sheet”, International Journal of Non-Linear Mechanics 43 (2008) 377. https://doi.org/10.1016/j.ijnonlinmec.2007.12.021.

Published

2024-07-07

How to Cite

Stagnation point flow of viscous nanofluid towards a shrinking sheet with quadratic buoyancy and thermophoresis influence: convection through porous media. (2024). Journal of the Nigerian Society of Physical Sciences, 6(3), 1970. https://doi.org/10.46481/jnsps.2024.1970

Issue

Section

Mathematics & Statistics

How to Cite

Stagnation point flow of viscous nanofluid towards a shrinking sheet with quadratic buoyancy and thermophoresis influence: convection through porous media. (2024). Journal of the Nigerian Society of Physical Sciences, 6(3), 1970. https://doi.org/10.46481/jnsps.2024.1970