Dynamical and optimal control analysis of lymphatic filariasis and buruli ulcer co-infection

Authors

  • Helen Olaronke Edogbanya Department of Mathematics, Federal University Lokoja, Nigeria
  • Emmanuel Sabastine Department of Mathematics, Federal University Lokoja, Nigeria
  • Rosalio G. Artes Jr. Mindanao State University Tawi-Tawi College of Technology and Oceanography, Philipines
  • Regimar A. Rasid Mindanao State University Tawi-Tawi College of Technology and Oceanography, Philipines

Keywords:

Neglected tropical disease, Mathematical model, Lymphatic filariasis, Buruli ulcer, Optimal control

Abstract

This study delves into the dynamics of lymphatic filariasis and buruli ulcer coinfection, two overlooked yet impactful tropical diseases. With lymphatic filariasis, commonly referred to as elephantiasis, and buruli ulcer, a chronic affliction caused by mycobacterium ulcerans, both posing significant health challenges, understanding their interaction is crucial. Utilizing a mathematical model, this research aims to analyze the dynamics of this coinfection, elucidating its complexities. The study establishes the local asymptotic stability of the disease-free equilibrium and calculates the basic reproduction number using the next generation matrix. It uncovers transcritical and backward bifurcation phenomena within the model. Additionally, the integration of time-dependent controls enables the exploration of optimal disease management strategies. Numerical simulations highlight the efficacy of employing a comprehensive approach, utilizing all available controls simultaneously, as the most effective strategy for disease control. These findings underscore the importance of integrated interventions in combating lymphatic filariasis and buruli ulcer coinfection, offering valuable insights for public health policymakers and practitioners.

Dimensions

J. P. Receveur, A. Bauer, J. L. Pechal, S. Picq, M. Dogbe, H. R. Jordan & M. E. Benbow, “A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease)”, FEMS Microbiology Reviews 45 (2002) 22. https://doi.org/10.1093/femsre/fuab045.

A. B. Durojaye, O. J. Adedeji, O. M. Egbewande, A. A. Ibrahim, E. S. Oladipupo, R. O. Yusuf & Y. Babatunde, “Enhancing communication strategies in controlling neglected tropical diseases in Nigeria”, Public Health Challenges 2 (2023) 1. https://onlinelibrary.wiley.com/doi/pdf/10.1002/puh2.100.

N. S. George, S. C. David, M. Nabiryo, B. A. Sunday, O. F. Olanrewaju, Y. Yangaza & D. O. Shomuyiwa, “Addressing neglected tropical diseases in Africa: a health equity perspective”, Global Health Research and Policy 8 (2003) 7. https://doi.org/10.1186/s41256-023-00314-1.

N. Hassoun & L. Cosler, “Global health impact: A model to alleviate the burden and expand access to treatment of neglected tropical diseases”, The American Journal of Tropical Medicine and Hygiene 108 (2023) 806. https://doi.org/10.4269%2Fajtmh.21-0583.

T. Gyorkos, R. Nicholls, A. Montresor, A. Luciañez, M. Casapia, K. St-Denis & S. Joseph, “Eliminating morbidity caused by neglected tropical diseases by 2030”, Revista Panamericana de Salud Pública 47 (2023) 8. https://doi.org/10.26633/RPSP.2023.16.

N. Sun & J. J. Amon, “Addressing inequity: neglected tropical diseases and human rights”, Health and human rights 20 (2018) 25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039727/.

D. Engels & X. N. Zhou,“ Neglected tropical diseases: an effective global response to local poverty-related disease priorities”, Infectious diseases of poverty 9 (2020) 17. https://doi.org/10.1186/s40249-020-0630-9.

J. M. Kirigia & G. N. Mburugu, “The monetary value of human lives lost due to neglected tropical diseases in Africa.”, Infectious Diseases of Poverty 6 (2017) 627. http://doi.org/10.1186/s40249-017-0379-y.

L. Da Silva Santos, H. Wolff, F. Chappuis, P. Albajar-Viñas, M. Vitoria, N. T. Tran & L. Gétaz, “Coinfections between persistent parasitic neglected tropical diseases and viral infections among prisoners from Sub-Saharan Africa and Latin America”, Journal of tropical medicine 1 (2018) 10. https://doi.org/10.1155/2018/7218534.

E. H. Clark & C. Bern “Chagas disease in people with HIV: a narrative review”, Tropical Medicine and Infectious Disease 6 (2021) 10. https://search.informit.org/doi/pdf/10.3316/informit.337139314382189.

A. U. Pradhan, O. Uwishema, J. Wellington, P. Nisingizwe, V. D. Thambi, C. V. P. Onyeaka & H. Onyeaka, “Challenges of addressing neglected tropical diseases amidst the COVID-19 pandemic in Africa: a case of Chagas disease”, Annals of Medicine and Surgery 81 (2022) 4. https://doi.org/10.1016/j.amsu.2022.104414

G. M. A. Camelo, J. K. A. D. O. Silva, S. M. Geiger, M. N. Melo, & D. A. Negrão-Corrêa, “Schistosoma and Leishmania: An untold story of coinfection”, Tropical Medicine and Infectious Disease 8 (2023) 14. https://search.informit.org/doi/pdf/10.3316/informit.410361205236780.

C. L. Azonvide, T. Adjobimey, H. Sina & L. Baba-Moussa, “Characterization of the influence of Mansonella perstans co-infection on immunity.”, Journal of Infectious Diseases and Immunity 14 (2022) 5. https://doi.org/10.5897/JIDI2022.0217.

Z. M. Medeiros, A. V. Vieira, A. T. Xavier, G. S. Bezerra, M. D. F. C. Lopes, C. V. Bonfim, & A. M. Aguiar-Santos, “Lymphatic filariasis: A systematic review on morbidity and its repercussions in countries in the Americas”, International Journal of Environmental Research and Public Health 19 (2021) 18. https://www.mdpi.com/1660-4601/19/1/316.

S. K. Ghosh & P. K. Srivastava, “A new outlook in lymphatic filariasis elimination in India”, in Parasitology and Microbiology Research, IntechOpen, India, 2020. https://www.intechopen.com/chapters/72005.

T. willliams, M. J. Karim, S. Uddin, S. Jahan,... & L. A. Kelly-Hope, “Socio-economic and environmental factors associated with high lymphatic filariasis morbidity prevalence distribution in Bangladesh”, PLOS Neglected Tropical Diseases 17 (2023) 16. https://doi.org/10.1016/S0001-8791(03)00044-7.

S. Emmanuel, S. Sathasivam, M. K. M. Ali, T. J. Kee & Y. S. Ling, “Estimating the transmission dynamics of Dengue fever in subtropical Malaysia using SEIR model”, Journal of Quality Measurement and Analysis 19 (2023) 45. https://journalarticle.ukm.my/22244/1/Paper4%20-.pdf.

M. Edmiston, S. Atinbire, E. O. Mensah, E. Mensah, B. Alomatu, K. Asemanyi Mensah & S. Palmer, “Evaluating the availability and quality of services for lymphatic filariasis morbidity in Ghana”, PLOS Neglected Tropical Diseases 17 (2023) 15. https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010805.

S. P. Coutts, C. L. Lau, E. J. Field, M. J. Loftus & E. L. Tay, “Delays in patient presentation and diagnosis for Buruli ulcer (Mycobacterium ulcerans infection) in Victoria, Australia”, Tropical Medicine and Infectious Disease 4 (2019) 10. https://doi.org/10.3390/tropicalmed4030100.

J. Boakye-Appiah, B. Hall, R. Reljic & R. E. Simmonds, Current Progress and Prospects for a Buruli Ulcer Vaccine, Springer International Publishing, 2023, pp. 71-95. https://doi.org/10.1007/978-3-031-24355-4_5.

A. J. Muleta, R. Lappan, T. P. Stinear & C. Greening, “Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer”, PLoS Neglected Tropical Diseases 15 (2021) 21. https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0009678.

P. I. Otuh, “Identification of genetic relatedness of Mycobacterium ulcerans DNA from human and aquatic environmental samples: One Health approach to Buruli ulcer epidemiology”, Journal of Sustainable Veterinary & Applied Sciences 4 (2023) 895. https://josvasmouau.com/wp-content/uploads/2023/07/14.-Otuh-2023-1.pdf.

S. Muhi, J. Osowicki, D. O’Brien, P. D. Johnson, S. Pidot, M. Doerflinger & T. P. Stinear, “A human model of Buruli ulcer: The case for controlled human infection and considerations for selecting a Mycobacterium ulcerans challenge strain”, PLOS Neglected Tropical Diseases 17 (2023) 17. https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0011394.

D. O. Konan, L. Mosi, G. Fokou, C. Dassi, C. A. Narh, C. Quaye, ... & B. Bonfoh, “Buruli ulcer in southern Côte D?ivoire: dynamic schemes of perception and interpretation of modes of transmission”, Journal of Biosocial Science 51 (2019) 533. https://doi.org/10.1017/S0021932018000317.

A. Leuenberger, B. V. Koné, R. T. N?krumah, D. Y. Koffi, B. Bonfoh, J. Utzinger & G. Pluschke, “Perceived water-related risk factors of Buruli ulcer in two villages of south-central Côte d?Ivoire. PLOS Neglected Tropical Diseases”, PLOS Neglected Tropical Diseases 16 (2022) e0010927. https://doi.org/10.1371/journal.pntd.0010927.

R. W. Xu, T. P. Stinear, P. D. Johnson & D. P. O?Brien, “Possum bites man: case of Buruli ulcer following possum bite”, Medical Journal of Australia 216 (2022) 453. https://onlinelibrary.wiley.com/doi/pdf/10.5694/mja2.51505.

L. Dhungel, M. E. Benbow & H. R. Jordan, “Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges”, One health 13 (2021) 9. https://doi.org/10.1016/j.onehlt.2021.100311.

S. Y. Aboagye, G. Kpeli, J. Tuffour & D. Yeboah-Manu, “Challenges associated with the treatment of Buruli ulcer”, Journal of Leukocyte Biology 105 (2019) 242. https://doi.org/10.1002/jlb.mr0318-128.

A. I. Abioye, O. J. Peter, H. A. Ogunseye, F. A. Oguntolu, T. A. Ayoola & A. O. Oladapo, “A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics”, Healthcare Analytics 4 (2023) 15. https://doi.org/10.1016/j.health.2023.100210.

P. K. N. Salonga, V. M. P. Mendoza, R. G. Mendoza & V. Y. Belizario Jr, “A mathematical model of the dynamics of lymphatic filariasis in Caraga region, the Philippines”, Royal Society Open Science 8 (2021) 24. https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.201965.

S. R. Narahari & A. B. Kanjarpane, “Public health systems research: evidence-based integrative medicine provides leadership in chronic care”, Current Science 104 (2013) 696. https://www.researchgate.net/publication/288449016.

L. Dupechez, P. Carvalho, V. Hebert, L. Marsollier, M. Eveillard, E. Marion & M. Kempf, “Senegal, a new potential endemic country for Buruli ulcer”, International Journal of Infectious Diseases 89 (2019) 130. https://doi.org/10.1016/j.ijid.2019.09.020.

D. Darmawati, M. Musafira, D. Ekawati, W. Nur, M. Muhlis & S. F. Azzahra, “Sensitivity, optimal control, and cost-effectiveness analysis of intervention strategies of filariasis”, Jambura Journal of Mathematics 4 (2022) 76. https://doi.org/10.34312/jjom.v4i1.11766.

J. Rychtár & D. Taylor, “A game-theoretic model of lymphatic filariasis prevention” PLoS Neglected Tropical Diseases 16 (2022) 18. https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010765.

I. H. Febiriana, V. Adisaputri, P. Z. Kamalia & D. Aldila, “Impact of screening, treatment, and misdiagnose on lymphatic filariasis transmission: a mathematical model”, Commun. Math. Biol. Neurosci. 2023 (2023) 67. https://doi.org/10.28919/cmbn/7983.

A. Alshehri, Z. Shah & R. Jan, “Mathematical study of the dynamics of lymphatic filariasis infection via fractional-calculus”, The European Physical Journal Plus 138 (2023) 15. https://link.springer.com/article/10.1140/epjp/s13360-023-03881-x.

C. Edholm, B. Levy, A. Abebe, T. Marijani, S. Le Fevre, S. Lenhart & F. Nyabadza, “A risk-structured mathematical model of buruli ulcer disease in Ghana”, in Mathematics of Planet Earth, H. Kaper, F. Roberts (Ed.), Springer, Cham., 2019, pp. 109-128. https://doi.org/10.1007/978-3-030-22044-0_5.

A. A. Momoh, H. M. Abdullahi, N. G. Abimbola & A. I. Michael, “Modeling, optimal control of intervention strategies and cost effectiveness analysis for buruli ulcer model”, Alexandria Engineering Journal 60 (2021) 2264. https://doi.org/10.1016/j.aej.2020.12.042.

M. A. Khan, E. Bonyah, Y. X. Li, T. Muhammad & K. O. Okosun, “Mathematical modeling and optimal control strategies of Buruli ulcer in possum mammals”, AIMS Mathematics 6 (2021) 9881. https://www.aimspress.com/aimspress-data/math/2021/9/PDF/math-06-09-572.pdf.

E. H. Clark & C. Bern, “Chagas disease in people with HIV: a narrative review”, Tropical Medicine and Infectious Disease 6 (2021) 10. https://search.informit.org/doi/pdf/10.3316/informit.337139314382189.

R. Fandio, H. Abboubakar, H. P. E. Fouda & A. Kumar, “Mathematical modelling and projection of Buruli ulcer transmission dynamics using classical and fractional derivatives: A case study of Cameroon”, Partial Differential Equations in Applied Mathematics 8 (2023) 100589. https://doi.org/10.1016/j.padiff.2023.100589.

Y. M. Chu, M. Farhan, M. A. Khan, M. Y. Alshahrani, T. Muhammad, & S. Islam, “Mathematical modeling and stability analysis of Buruli ulcer in Possum mammals” Results in Physics 27 (2021) 104471. https://doi.org/10.1016/j.rinp.2021.104471.

C. Castillo-Chavez, B. Song, “Dynamical models of tuberculosis and their applications”, Mathematical Biosciences & Engineering 1 (2004) 361. http://doi.org/10.3934_mbe.2004.1.361.pdf.

Published

2024-09-08

How to Cite

Dynamical and optimal control analysis of lymphatic filariasis and buruli ulcer co-infection. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 1972. https://doi.org/10.46481/jnsps.2024.1972

Issue

Section

Mathematics & Statistics

How to Cite

Dynamical and optimal control analysis of lymphatic filariasis and buruli ulcer co-infection. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 1972. https://doi.org/10.46481/jnsps.2024.1972