A Novel developments of ZnO/SiO2 nanocomposite: a nanotechnological approach towards insect vector control



  • Ezra Abba Department of Zoology, Faculty of Science, Gombe State University
  • Zaccheus Shehu Chemistry Department, Faculty of Science, Gombe State University, Gombe, PMB 127, Gombe, Nigeria; Department of Chemistry, College of Natural Science, Makerere University, P.O. Box 7062, Kampala
  • Wilson Lamayi Danbature Chemistry Department, Faculty of Science, Gombe State University, Gombe, Nigeria
  • Kennedy Poloma Yoriyo Department of Zoology, Faculty of Science, Gombe State University, Gombe, Nigeria
  • Rifkatu Dogara Kambel Chemistry Department, Faculty of Science, Gombe State University, Gombe, Nigeria
  • Charles Nsor Ayuk Department of Zoology, Faculty of Science, Gombe State University, Gombe, PMB 127, Nigeria


Culex quinquefasciatus, Vector control, Nanotechnological, ZnO@SiO2 nanocomposite


Recently, there is increasing efforts to develop newer and effective larvicides to control mosquito vectors. This study was carried out to examine the efficacy of ZnO/SiO2 nanocomposite synthesized using Gum Arabic against Culex quinquefasciatus larvae. The elemental composition, morphology, functional groups and surface plasmon resonance of the ZnO@SiO2 nanocomposite was analyzed by Energy dispersive X-ray analysis (EDX), Scanning electron microscope (SEM), FTIR and UV-Visible spectroscopy respectively. In bioassay, larvae were exposed to three different concentrations of synthesized ZnO/SiO2 nanocomposite. The mortality rates at concentrations of 10, 20 and 25 were found to be (70%, 80%, 86%), (56%, 64%, 84%) and (44%, 48%, 76%) for 1st, 2nd, and 3rd instar respectively. This study revealed that the synthesized ZnO@SiO2 nanocomposite exhibit high larvicidal activity; 1st instar (LC50=4.024, LC90= 39.273 mg/l), 2nd instar (LC50=8.767, LC90=51.069 mg/l) and 3rd instar (LC50=13.761.LC90=81.809 mg/l).


A. D. M. V. Peguit, Jr. R. T. Candidato, F. R. G. Bagsican, M.K. G. Odarve, M. E. Jabian, B. R. B. Sambo, R. M. Vequizo & A. C. Alguno, “Growth of chemically deposited ZnO and ZnO-SiO2 on Pt buffered Si substrate”, IOP Conf. Series: Mater Sci Eng 79 (2015) 012026.

A. E. Onar, G. ?ogen, U. C. Özö?üt, E. Erkoç, A. Kalemta? & T. Tavanolu, “Synthesis and Characterization of Nanocomposite ZnO-SiO2Th in Films by Sol-Gel Dip Coating Technique”, 18th International Metallurgy & Materials Congress, IMMC (2016) 865.

A. E. Raevskaya, Y. V. Panasiuk, O. L. Stroyuk, S. Y. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin & D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores”, RSC Adv. 4 (2014) 63393.

A. Laurentowska & T. Jesionowski, “ZnO-SiO2 Oxide Composites synthesis during Precipitation from Emulsion System”, Physicochem. Probl. Miner. Process, 48(1) (2012) 63.

A. M. Ali, A. A. Ismail, R. Najmy & A. Al-Hajry, “Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst”, JPhotochemPhotobiol A: Chemistry 275 (2014) 37.

A. Subramaniyan, V. Visweswaran, K. C. Saravana & T. Sornakumar, “Preparation and Characterisation of ZnO-SiO2 and Bi2O3–CuO Nanocomposites”, Nanochem Res 3 (2018) 79.

B. Conti, G. Benelli, G. Flamini, P. L. Cioni, R. Profeti & L. Ceccarini, “Larvicidal and repellent activity of Hyptissuaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae)”, Parasitol. Res. 110 (2012) 2013.

C. Yoon, B. Jeon & G. Yoon, “Formation and Characterization of Various ZnO/SiO2-Stacked Layers for Flexible Micro-Energy Harvesting Devices”, Appl. Sci. 8 (2018) 1127.

D. Irvan, M. M. Gui, H. K. Azlina, R. M. Abdul & T. L. Keat , “Removal of SO2 and no over Rice Husk Ash (RHA)/Cao-supported metal oxides”, JEngSciTechnol 3 (2008) 109.

H. Aymen, M. Abdelali, G. Ouanassa & G. Mohamed, “Synthesis and characterization of bioactive tannery SiO2-CaO-P2O5Bioglass”, Int J. Eng Appl Sci 5 (2018) 23.

I. V. Ali & B. Ahmet, “Synthesis and Characterization of ZnO/SiO2 Core-Shell Microparticles and Photolytic Studies in Methylene Blue”, Int. J. Res. Chem. Environ 4 (2014) 161.

K. Raghavendra & S. K. Subbarao, “(2002): Chemical insecticide in malaria vector control in India”, ICMR Bull 32 (2007) 93.

K. Veerakumar, M. Govindarajan & M. Rajeswary, “Green synthesis of silver nanoparticles using Sidaacuta(Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae),” Parasitol Res 112 (2013) 4073.

L. D. Wilson, Z. Shehu, A. J. Mai, B. Magaji, M. M. Adam & M. A. Bunu, “Green synthesis, characterization and larvicidal activity of Cu/Ni bimetallic nanoparticles using fruit extract of Palmyra palm”, Int J Chem Mater Res 8 (2020) 20.

M. Jameel, M. Shoeb, M. T. Khan, R. Ullah, M. Mobin, M. K. Farooqi & S. M. Adnan, “Enhanced Insecticidal Activity of Thiamethoxam by Zinc Oxide Nanoparticles: A Novel Nanotechnology Approach for Pest Control”, ACS Omega 5 (2020)1607.

M. M. Attia, S. M. Soliman & M. A. Khalf, “Hydrophilic nanosilica as a new larvicidal and molluscicidal agent for controlling of major infectious diseases in Egypt”, Vet World 10 (2017) 1046.

O. J Afolabi, I. A. Simon-Oke & B. O. Osomo, “Distribution, abundance and diversity of

mosquitoes in Akure, 23. Ondo State, Nigeria”, JParasitol Vector Biol 5 (2013) 136.

P. Maurya, L. Mohan, P. Sharma, L. Batabyal & C. N. Srivastava, “Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae)”, Entomol Res 37 (2007) 153.

R. M. Mohamed & E. S. Aazam, “Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Ag for visible photocatalytic reduction of Hg(II)”, Desalination and Water Treatment 50 (2012)140.

S. Lotfiman & M. Ghorbanpour, “Antimicrobial activity of ZnO/silica gel nanocomposites prepared by a simple and fast solid-state method”, Surf Coat Tech 310 (2017) 129.

S. T. Fardood, A. Ramazani & S. W. Joo, “Eco-friendly Synthesis of Magnesium Oxide Nanoparticles using Arabic Gum”, JAppl Chem Res 12 (2018) 8.

T. A. Elijah, O. O. Omolara, I. A. Haleemat, M. Roshila, H. L. Ayomide, S. B. Olusola & O. O. Charles, “Investigation of the Larvicidal Potential of Silver Nanoparticles against Culex quinquefasciatus: A Case of a Ubiquitous Weed as a Useful Bioresource”, JNanomat (2016)1.

T. K. Barik, B. Sahu & V. Swain, “Nanosilica-from medicine to pest control”, Parasitol Res103 (2008) 253.

T. K. Barik, R. Kamaraju & A. Gowswami, “Silica nanoparticle: A potential new insecticide for mosquito vec¬tor control”, Parasitol. Res, 111 (2012) 1075.

T. P. A. Mahendran, G. O. Williams, S. Phillips & T. C. Al-Assaf, “Baldwin New Insights into the Structural Characteristics of the Arabinogalactan-Protein (AGP) Fraction of Gum Arabic”, J. Agric. Food Chem 56 (2008), 9269.

T. Pangilinan-Ferolin & R. M. Vequizo, “Synthesis of Zinc Silicate Using Silica from Rice Hull Ash (RHA) Through Solid-State Reaction”, Proceedings of the IETEC’13 Conference, Ho Chi Minh City, Vietnam, (2013) 1.

WHO., Lymphatic filariasis, a global brief on vector-borne diseases, WHO/DCO/WHD/2014, 1 (2014) 1.

WHO., “Lymphatic filariasis—the disease and its control,” Tech. Rep. 71, World Health Organization, Geneva, Switzerland (2002).

W. L. Danbature, M. Yoro, Z. Shehu, Y. D. Madugu & S. I. Aliyu, “Solvent-Free Mechanochemical Synthesis, Characterization and Antibacterial Potency of CaO@SiO2 Nanocomposite”, J Mater Sci ResRev 4 (2019) 1.

W. L. Danbature, Z. Shehu, M. Yoro & M. M. Adam, “Nanolarvicidal Effect of Green Synthesized Ag-Co Bimetallic Nanoparticles on Culex quinquefasciatus Mosquito”, AdvBiol Chem, 10(2020) 16.



How to Cite

Abba, E., Shehu, Z., Lamayi Danbature, W. ., Poloma Yoriyo, K., Dogara Kambel , R., & Nsor Ayuk, C. (2021). A Novel developments of ZnO/SiO2 nanocomposite: a nanotechnological approach towards insect vector control. Journal of the Nigerian Society of Physical Sciences, 3(3), 262–266. https://doi.org/10.46481/jnsps.2021.198



Original Research