Performance Study of N-grams in the Analysis of Sentiments
Keywords:
ngrams, economic texts, machine learning, deep learning, sentiment analysisAbstract
In this work, a study investigation was carried out using n-grams to classify sentiments with different machine learning and deep learning methods. We used this approach, which combines existing techniques, with the problem of predicting sequence tags to understand the advantages and problems confronted with using unigrams, bigrams and trigrams to analyse economic texts. Our study aims to fill the gap by evaluating the performance of these n-grams features on different texts in the economic domain using nine sentiment analysis techniques and found more insights. We show that by comparing the performance of these features on different datasets and using multiple learning techniques, we extracted useful intelligence. The evaluation involves assessing the precision, recall, f1-score and accuracy of the function output of the several machine learning algorithms proposed. The methods were tested using Amazon, IMDB, Reuters, and Yelp economic review datasets and our comprehensive experiment shows the effectiveness of n-grams in the analysis of sentiments.

Published
How to Cite
Issue
Section
Copyright (c) 2021 Journal of the Nigerian Society of Physical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of the Nigerian Society of Physical Sciences (JNSPS) is published under the Creative Commons Attribution 4.0 (CC BY-NC) license. This license was developed to facilitate open access, namely, it allows articles to be freely downloaded and to be re-used and re-distributed without restriction, as long as the original work is correctly cited. More specifically, anyone may copy, distribute or reuse these articles, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article, mine the article even for commercial purposes, as long as they credit the author(s).