Sedimentological and weathering signature investigation of claystones from Northern Bida Basin, Central Nigeria

Authors

  • S. A. Adepoju Department of Geology and Mineral Science, Kwara State University, Malete, Kwara State
  • O. J. Ojo Department of Geology, Federal University, Oye-Ekiti
  • O. Olaniyan Department of Geology and Mineral Science, Kwara State University, Malete, Kwara State
  • T. E. Bamidele Department of Geology and Mineral Science, Kwara State University, Malete, Kwara State
  • I. S. Usman Department of Geology and Mineral Science, Kwara State University, Malete, Kwara State

Keywords:

Claystone, Sedimentology, Paleoweathering, Provenance, Raw materials

Abstract

This study investigates claystone samples from the northern Bida Basin, northcentral Nigeria, using sedimentological analysis, bulk geochemical techniques (X-ray fluorescence and inductively coupled plasma mass spectrometry), and statistical methods. The research aims to assess the resource potential of the claystone by analyzing mineralogical compositions, weathering indices, and reconstructing depositional environments with emphasis on economic implications. Sedimentological studies identified two sub-facies; the laminated and massive claystones that ranges in color from white, stained-white, and brown to grey, interpreted as suspension-settled deposits of flocculated clay-sized particles within overbank fines of a floodplain. Geochemical analysis of 10 samples from five locations revealed significant SiO2(47.58–78.58%), Al2O3 (12.17–34.35%), and Fe2O3 (0.63–7.11%) contents. Comparison with published values suggests suitability for ceramics and paint production, especially after wet-sieving. Statistical visualization highlighted SiO2 and Al2O3 as dominant oxides. Factor analysis grouped the geochemical data into: (i) F1-F2 (eigenvalues > 1.0), indicating major influence of SiO2 and Al2O3 ; and (ii) F3-F5 (eigenvalues < 1.0), showing minor contributions. Ratios like Ni/Co (1.14–4.00), Cu/Zn (0.42–4.35), U/Th (0.11–0.87), V/Cr (0.04–2.15), and V/(V+Ni) (0.73–0.95) indicate oxic paleodepositional conditions. Provenance indicators such as Al2O3/TiO2 (6.77–20.84), Th/Sc (0.60–4.26), La/Sc (1.59–12.66), and chondrite-normalized REE patterns suggest a source from acidic/silicic igneous rocks. High CIA (88.94–99.49), CIW (96.72–99.94), and PIA (80.40–99.03) values indicate intense weathering in the source area, reflecting non-in-situ clay types. In conclusion, the northern Bida Basin claystones show strong potential as raw materials for ceramics, paint, and brick-making industries.

Dimensions

[1] B. Velde, “Composition and mineralogy of clay minerals”, in Origin and Mineralogy of Clays: Clays and the Environment, Velde. B. (Ed.), Springer, Berlin, Heidelberg, 1995, pp. 8–342. https://doi.org/10.1007/978-3-662-12648-6-2.

[2] H. H. Murray, “Applied Clay Science: Traditional and new applications for Kaolin, Smectite, and Palygorskite: A general overview”, Applied Clay Science 17 (2000) 207. https://doi.org/10.1016/S0169-1317(00)00016-8.

[3] G. Ekosse, “X-ray powder diffraction patterns of clays and clay minerals in Botswana”, Associated printers, Gaborone, Botswana, 2005, pp. 70–78. https://search.worldcat.org/title/X-ray-powder-diffraction-patterns-of-clays-and-clay-minerals-in-Botswana/oclc/67939835.

[4] S. O. Onyekuru, P. O. Iwuoha, C. J. Iwuagwu, K. K. Nwozor, & K. D. Opara, “Mineralogical and geochemical properties of clay deposits in parts of Southeastern Nigeria”, International Journal of Physical Sciences 13 (2018) 217. https://doi.org/10.5897/IJPS2018.4733.

[5] D. R. Adeleye, “Cretaceous Sediments from the Shores of Lake Kainji, Nigeria”, Journal of Mining and Geology 7 (1972) 5. https://doi.org/10.1016/0037-0738(74)90013-X.

[6] S. P. Braide, “Syntectonic fluvial sedimentation in the central Bida Basin” Journal of Mining and Geology 28 (1992) 55. https://www.sciepub.com/reference/108380.

[7] J. D. Falconer, “The Geology and Geography of Northern Nigeria,” Macmillan, London (1911), pp.135-136. https://www.sciepub.com/reference/119984.

[8] H. A. Jones, “The Oolitic ironstone of Agbaja plateau Kabba province”, Record of the Geological Survey of Nigeria, 1958, p. 20–43. https://www.sciepub.com/reference/110330.

[9] D. R. Adeleye, “Sedimentology of the fluvial Bida sandstones (Cretaceous), Nigeria”, Sedimentary Geology 112 (1974) 1. https://doi.org/10.1016/0037-0738(74)90013-X.

[10] O. Olaniyan & S. B. Olobaniyi, “Facies analysis of the Bida sandstone formation around Kajita, Nupe Basin, Nigeria”, Journal of African Earth Sciences 23 (1996) 253. https://doi.org/10.1016/S0899-5362(96)00066-8.

[11] R. Olugbemiro & C. S. Nwajide, “Grain size distribution and particle morphogenesis as signatures of depositional environments of Cretaceous (Non-ferruginous) facies in the Bida Basin, Nigeria”, Journal of Mining and Geology 33 (1997) 89.

[12] O. J. Ojo, “Depositional environment and petrographic characteristics of Bida Formation around Share-Pategi, northern Bida Basin, Nigeria”, Journal of Geography and Geology 4 (2012) 224. https://doi.org/10.5539/jgg.v4n1p224.

[13] O. J. Ojo, & S. O. Akande, “Sedimentary facies relationships and depositional environments of the Maastrichtian Enagi Formation, northern Bida Basin, Nigeria”, Journal of Geography and Geology 4 (2012) 136. https://doi.org/10.5539/jgg.v4n1p136.

[14] S. A. Adepoju, O. J. Ojo, S. O. Akande, & B. Sreenivas “Provenance of the Campanian-Maastrichtian sandstone, northern Bida Basin: evidence from facies analysis, detrital zircon morphology and wholerock geochemistry”, Journal of Nigerian Association of Petroleum Explorationists 29 (2020) 59. https://kwasuspace.kwasu.edu.ng/items/6d57d9b3-b9f4-4673-8747-b91d1661d47a/full.

[15] S. A. Adepoju, O. J. Ojo, S. O. Akande, & B. Sreenivas, “Petrographic and geochemical constraints on petrofacies, provenance and tectonic setting of the Upper Cretaceous sandstones, northern Bida Basin, northcentral Nigeria”, Journal of African Earth Sciences 174 (2021) 104041. https://doi.org/10.1016/j.jafrearsci.2020.104041.

[16] S. A. Adepoju, & O. J. Ojo, “Physico-chemical and mineralogical assessment of geophagy Clays from northern Bida Basin, Nigeria and their health implications”, Journal of International Medical Geologists Association-Nigeria (IMGA-Nigeria) 16 (2022) 1. http://dx.doi.org/10.1515/geo-2022-0507.

[17] M. Ghafoor, Z. Rehman, & H. A. Khan, “Enhancing claystone applications through geochemical weathering analysis”, Industrial Materials Review 48 (2021) 478.

[18] A. J. Whiteman, “Nigeria: Its petroleum geology, resources and potential”, Graham and Trotman, London, UK, 1982, pp. 380–394. http://dx.doi.org/10.1007/978-94-009-7361-9.

[19] S. B. Ojo, & D. E. Ajakaiye, “Preliminary interpretation of gravity measurements in the middle Niger Basin area, Nigeria”, in Geology of Nigeria, C. A. Kogbe (Ed.), Elizabethan Publishing Co., Lagos, Nigeria, 1989, pp. 347-348. https://www.scirp.org/reference/referencespapers?referenceid=1791025.

[20] S. B. Ojo., “Origin of a major aeromagnetic anomaly in the Middle Niger Basin, Nigeria”, Tectonophysics 185 (1990) 162. https://doi.org/10.1016/0040-1951(90)90410-A.

[21] J. O. Adeniyi, “Ground total magnetic intensity in parts of the Nupe Basin and the adjacent basement complex, Niger State, Nigeria”, Nigerian Journal of Applied Sciences 3 (1985) 67.

[22] E. E. Udensi, & I. B. Osazuwa, “Spectra determination of depths to magnetic rocks under the Nupe Basin, Nigeria”, Nigerian Association Petroleum Explorationist Bulletin 17 (2004) 22.

[23] D. R. Adeleye, “The Geology of the middle Niger Basin”, in Geology of Nigeria, C. A. Kogbe (Ed.), Elizabethan Publishing Co., Lagos, 1989, p. 283.

[24] D. R. Adeleye, “Origin of Ironstones, an Example from the Middle Niger Valley”, Journal of Sedimentary Petrology 43 (1973) 727. https://doi.org/10.1306/74d7284c-2b21-11d7-8648000102c1865d.

[25] D. R. Adeleye, & T. F. J. Dessauvagie “Stratigraphy of the Niger embayment, near Bida, Nigeria”, in African Geology. T. F. J. Dessauvagie, & A. J. Whiteman (Eds.), University of Ibadan Press, Ibadan, 1972, p. 186.

[26] A. D. Miall, “The Geology of fluvial deposits: sedimentary facies, Basin analysis, and petroleum geology”, Springer Verlag Inc., Heidelberg, 1996, p. 582.

[27] C. W. Rhee, W. H. Ryand, & S. K. Chough, “Contrasting development patterns of crevasse channel deposits in Cretaceous alluvial successions, Korea”, Sedimentary Geology 85 (1993) 401. http://dx.doi.org/10.1016/0037-0738(93)90095-M.

[28] C. Reimann, P. Filzmoser, & R. G. Garrett, “Factor analysis applied to regional geochemical data: problems and possibilities”, Applied Geochemistry 17 (2002) 185. http://dx.doi.org/10.1016/S0883-2927(01)00066-X.

[29] T. J. Pearce, D. Wray, K. Ratcliffe, D. K. Wright, & A. Moscariello, “Chemostratigraphy of the upper Carboniferous Schooner Formation, southern North Sea”, inCarboniferous hydrocarbon geology: The southern North Sea and surrounding onshore areas, J. D. Collinson, D. J., Evans, D. W. Holliday, & N. S. Jones (Eds.) Yorkshire Geological Society, 2005, 147–164.

[30] J. B. Svendsen, H. Friis, H. Stollhoffen, & N. Hartley, “Facies discrimination in a mixed fluvio-eolian setting using elemental whole-rock geochemistry-Applications for reservoir characterization”, Journal of Sedimentary Research 77 (2007) 23. http://dx.doi.org/10.2110/jsr.2007.008.

[31] G. Pe-Piper, S. Triantafyllidis, & D. J. W. Piper, “Geochemical identification of clastic sediment provenance from known sources of similar geology: The Cretaceous Scotian Basin, Canada”,. Journal of Sedimentary Research 78 (2008) 595. http://dx.doi.org/10.2110/jsr.2008.067.

[32] P. Filzmoser, K. Hron, & C. Reimann, “Principal component analysis for compositional data with outliers”, Environmetrics 20 (2009) 621. http://dx.doi.org/10.1002/env.966.

[33] K. Hayashi, H. Fujisawa & H. D Holland, “Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada”, Geochimica et Cosmochimica Acta 61 (1997) 4115. http://dx.doi.org/10.1016/S0016-7037(97)00214-7.

[34] M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones”, Journal of Geology 91 (1983) 611. http://dx.doi.org/10.1086/628815.

[35] B. P. Roser & R. J. Korsch, “Provenance signatures of sandstonemudstone suites determined using discrimination function analysis of major-element data”, Chemical Geology 67 (1988) 119. http://dx.doi.org/10.1016/0009-2541(88)90010-1.

[36] K. Hayashi, H. Fujisawa & H. D Holland, “Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada”, Geochimica et Cosmochimica Acta 61 (1997) 4115. http://dx.doi.org/10.1016/S0016-7037(97)00214-7.

[37] K. C. Condie, “Chemical composition and evolution of upper continental crust: contrasting results from surface samples and shales”, Chemical Geology 104 (1993) 1. http://dx.doi.org/10.1016/0009-2541(93)90140-E.

[38] L. Bracciali, M. Marroni, L. Pandolfi, S. Rocchi, “Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apenninces): from source areas to configuration of margins”, in Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry, J. Arribas, S. Critelli, & M. J. Johnsson (Eds.), Geological Society of America Special Paper, USA, 2007, pp. 73–101. http://dx.doi.org/10.1130/2006.2420(06).

[39] L. Zhang, D. Xiao, S. Lu, S. Jiang & S. Lu, “Effect of sedimentary environment on the formation of organic-rich marine shale: Insights from major/trace elements and shale composition”, International Journal of Coal Geology 204 (2019) 50. https://doi.org/10.1016/j.coal.2019.01.014.

[40] B. N. Nath, M. Bau, R. B. Ramalingeswara, & C. M. Rao, “Trace and 13

rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone”, Geochimicaet Cosmochimica Acta 61 (1997) 2375. http://dx.doi.org/10.1016/S0016-7037(97)00094-X.

[41] B. Jones, & D. C. Manning, “Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones”, Chemical Geology 111 (1994) 111. http://dx.doi.org/10.1016/0009-2541(94)90085-X.

[42] M. Khanehbad, R. Moussavi-Harami, A. Mahboubi & M. Nadjafi “Geochemistry of carboniferous shales of the Sardar Formation, east central Iran: Implication for provenance, paleoclimate and paleo-oxygenation conditions at a passive continental margin” Geochemistry International 50 (2012) 867. http://dx.doi.org/10.1134/S0016702912090029.

[43] S.M. Rimmer, “Geochemical Paleoredox Indicators in DevonianMississippian Black Shales, Central Appalachian Basin (USA)”, Chemical Geology 206 (2004) 373. http://dx.doi.org/10.1016/j.chemgeo.2003.12.029.

[44] R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions and metamorphic studies of shales and limestones near Pueblo, Co, USA. Chemical Geology 191 (2002) 305. http://dx.doi.org/10.1016/S0009-2541(02)00133-X.

[45] O. J. Ojo, S. A. Adepoju, A. Awe & M. O. Adeoye, “Mineralogy and geochemistry of the sandstone facies of Campanian Lokoja formation in the Southern Bida basin, Nigeria: implications for provenance and weathering history”, Heliyon 7 (2021) e08564. https://doi.org/10.1016/j.heliyon.2021.e08564.

[46] B. P. Roser & R. J. Korsch, “Determination of tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio”, The Journal of Geology 94 (1986) 635. http://dx.doi.org/10.1086/629071.

[47] M. R. Bhatia & K. A. W. Crook, “Trace elements characteristics of graywackes and tectonic setting discrimination of sedimentary basins”, Contributions to Mineralogy and Petrology 92 (1986) 181. http://dx.doi.org/10.1007/BF00375292.

[48] H. W. Nesbitt & G. M. Young, “Early proterozoic climates and plate motions inferred from major element chemistry of lutites”, Nature 299 (1982) 715. http://dx.doi.org/10.1038/299715a0.

[49] P. Wang, Y. Du, W. Yu, T. J. Algeo, Q. Zhou, Y. Xu, L. Qi, L. Yuan, & W. Pan, “The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history”, EarthScience Reviews (2020) 201. http://dx.doi.org/10.1016/j.earscirev.2019.103032.

[50] K. Deng, S. Yang, & Y. Guo, “A global temperature control of silicate weathering intensity”, Nature Communications 13 (2022) 1781. http://dx.doi.org/10.1038/s41467-022-29415-0.

[51] O. A. Okunlola & O. Idowu, “Geochemistry, classification and maturity of the Eocene Nanka Formation South-East, Nigeria”, International Journal of Recent Research in Interdisciplinary Sciences (IJRRIS) 10 (2023) 41. https://doi.org/10.5281/zenodo.7997489.

[52] S. O. Onyekuru, P. O. Iwuoha, C. J. Iwuagwu, K. K. Nwozor & K. D Opara, “Mineralogical and geochemical properties of clay deposits in parts of Southeastern Nigeria”, International Journal of Physical Sciences 13 (2018) 217. https://doi.org/10.5897/IJPS2018.4733.

[53] L. J. Suttner & P. K Dutta, “Alluvial sandstone composition and paleoclimate Framework mineralogy”, Journal of Sedimentary Petrology 56 (1986) 326. http://dx.doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.

[54] H. W. Nesbitt, G. M. Young, S. M. McLennan & R. R. Keays, “Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies”, Journal of Geology 104 (1996) 525. http://dx.doi.org/10.1086/629850.

[55] L. J. Suttner & P. K Dutta, “Alluvial sandstone composition and paleoclimate Framework mineralogy”, Journal of Sedimentary Petrology 56 (1986) 326. http://dx.doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.

[56] H. W. Nesbitt, G. M. Young, S. M. McLennan & R. R. Keays, “Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies”, Journal of Geology 104 (1996) 525. http://dx.doi.org/10.1086/629850.

Published

2025-08-01

How to Cite

Sedimentological and weathering signature investigation of claystones from Northern Bida Basin, Central Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2041. https://doi.org/10.46481/jnsps.2025.2041

How to Cite

Sedimentological and weathering signature investigation of claystones from Northern Bida Basin, Central Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2041. https://doi.org/10.46481/jnsps.2025.2041