Transmuted cosine Topp-Leone G family of distributions: properties and applications

Authors

  • Abdulhameed Ado Osi Department of Statistics, Aliko Dangote University of Science and Technology, Wudil, Nigeria
  • Sani Ibrahim Doguwa Department of Statistics, Ahmadu Bello University, Zaria, Nigeria
  • Abubakar Yahaya Department of Statistics, Ahmadu Bello University, Zaria, Nigeria
  • Yahaya Zakari Department of Statistics, Ahmadu Bello University, Zaria, Nigeria
  • Abubakar Usman Department of Statistics, Ahmadu Bello University, Zaria, Nigeria

Keywords:

Tope-Leone G, Cosine-G, Transmuted-G, Monte-Carlo simulation, Maximum likelihood estimation

Abstract

In contemporary data analysis, the need for flexible and adaptable probabilistic models capable of capturing complex dependencies and tail behaviors in real-life datasets has become increasingly apparent. In light of this demand, A new trigonometric generalized family of distribution, the "Transmuted Cosine Topp-Leone G Family" is proposed in this study. Established on the foundations of, this family combines the adaptability of the Topp-Leone distribution with the periodicity of the cosine function and transmutation theory to produce a flexible framework that may be used to represent a wide range of real-life phenomena. We derive some of the statistical properties of the introduced family such as; survival and hazard functions, and moment and moment-generating functions. Moreover, the model parameters are estimated using the Maximum Likelihood method, and a Monte Carlo simulation was performed to ascertain the behavior and the consistency of the estimates. We investigate the shape of the distribution parameters which results in distributions with left-skew, right-skew, increasing, and decreasing shapes. Lastly, through empirical demonstrations, we showcase the efficacy of the family TrCTLG models in fitting lifetime datasets.

Dimensions

R. Gupta & D. Kundu, “Generalized exponential distributions”, Australian and New Zealand Journal of Statistics 41 (1999) 173. https://doi.org/10.1111/1467-842X.00072.

A. W. Marshall & I. Olkin, “A new method a parameter to a family for adding with to the exponential and application of distributions Weibull families”, Biometrika 84 (1997) 641. https://doi.org/10.1093/biomet/84.3.641.

N. Eugene, C. Lee & F. Famoye, “Beta normal distribution and its applications”, communications in statistics - theory and methods, 31 (2002) 497. https://doi.org/http://dx.doi.org/10.1081/STA-120003130.

G. M. Cordeiro & M. de Castro, “A new family of generalized distributions”, Journal of Statistical Computation and Simulation 81 (2011) 883. https://doi.org/10.1080/00949650903530745.

D. Kumar, U. Singh & S. K. Singh, ”A new distribution using sine function- its application to bladder cancer patients data”, J. Stat. Appl. Probab. 4 (2015) 9. http://dx.doi.org/10.12785/jsap/040309.

S. Nanga, S. Nasiru, & J. Dioggban, “Cosine Topp – Leone family of distributions: properties and regression”, Research in Mathematics 10 (2023) 2208935. https://doi.org/10.1080/27684830.2023.2208935.

M. Muhammad, R. A. Bantan, L. Liu, C. Chesneau, M. H. Tahir, F. Jamal, & M. Elgarhy, “A new extended cosine–g distributions for lifetime studies”, Mathematics 9 (2021) 2758. https://doi.org/10.3390/math9212758.

M. E. Bakr, A. A. Al-Babtain, Z. Mahmood, R. A. Aldallal,S. K. Khosa, M. M. Abd El-Raouf, E. Hussam & A. M. Gemeay, “Statistical modelling for a new family of generalized distributions with real data applications”, Mathematical Biosciences and Engineering 19 (2022) 9. https://doi.org/10.3934/mbe.2022404.

Z. Mahmood, T. M Jawa, N. Sayed-Ahmed, E. M. Khalil, A. H. Muse, & A. H. Tolba, “An extended cosine generalized family of distributions for reliability modeling: characteristics and applications with simulation study”, Mathematical Problems in Engineering 2022 (2022) 3634698. https://doi.org/10.1155/2022/3634698.

C. W. Topp, & F. C. Leone, ”A family of j-shaped frequency functions”, Journal of the American Statistical Association 50 (1955) 209. https://doi.org/10.1080/01621459.1955.10501259.

A. Al-shomrani, O. Arif, A. Shawky, S. Hanif & M. Shahbaz, “Topp-Leone family of distributions: some properties and application”, Pak. J. Stat. Oper. Res. 7 (2016) 3. http://dx.doi.org/10.18187/pjsor.v12i3.1458.

A. A. Sanusi, S. I. Doguwa, I. Audu, & Y. M. Baraya, “Topp Leone Exponential – G Family of distributions: properties and application”, NIPES Journal of Science and Technology Research 2 (2020) 83. https://doi.org/10.37933/nipes/2.4.2020.10

B. Oluyede, S. Chamunorwa, & F. Chipepa, “The Topp-Leone Gompertz-G family of distributions with applications”, Journal of Statistics and Management Systems 25 (2022) 1399. https://doi.org/10.1080/09720510.2021.1972623.

H. Reyad, M. Alizadeh, F. Jamal & S. Othman, “The Topp Leone odd Lindley-G family of distributions: properties and applications”, Journal of Statistics and Management Systems 21 (2018) 1273. https://doi.org/10.1080/09720510.2018.1495157.

A. S. Hassan, M. Elgarhy, & R. Ragab, “Statistical properties and estimation of inverted topp-leone distribution”, J. Stat. Appl. Pro. 331 (2020) 319. http://dx.doi.org/10.18576/jsap/090212.

H. M. Yousof, & A. Z. Afify, ”The transmuted exponentiated generalized-g family of distributions”, Pakistan Journal of Statistics and Operation Research 11 (2015) 441. http://dx.doi.org/10.18187/pjsor.v11i4.1164.

A. Z. Afify, H. M. Yousof, M. Alizadeh, I. Ghosh, & S.Ray, “The Marshall-Olkin transmuted-G family of distributions”, Stochastics and Quality Control 35 (2020) 2. https://doi.org/https://doi.org/10.1515/eqc-2020-0009.

H. M. Yousof, M. A. Jahanshahi, T. G. Ramires, I. Ghosh, G. G. Hamedani & C. Science, “The transmuted Topp-Leone G family of distributions: rheory, characterizations and applications”, Journal of Data Science 15 (2017) 723. http://dx.doi.org/10.6339/JDS.201710_15(4).00008.

A. S. Mohammed & F. I. Ugwuowo, ”On transmuted exponential-topp leon distribution with monotonic and non-monotonic hazard rates and its applications”, RT&A 16 (2021) 197. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.gnedenko.net/Journal/2021/042021/RTA_4_2021-15.pdf.

W. T. Shaw, & I. R. Buckley, “The alchemy of probability distributions: beyond Gram-Charlier & Cornish-Fisher expansions, and skew-normal or kurtotic-normal distributions”, arXiv. [Online]. https://doi.org/10.48550/arXiv.0901.0434.

L. Souza, W. R. Junior, C. C. Brito, C. Chesneau, T. A. Ferreira, & L. Soares, “General properties for the Cos-G class of distributions with applications”, Eurasian Bulletin of Mathematics 2 (2019) 63. https://scholar.google.com/scholar_lookup?title=General+properties+for+the+Cos-G+class+of+distributions+with+applications&author=Souza,+L.&author=Junior,+W.R.O.&author=de+Brito,+C.C.R.&author=Chesneau,+C.&author=Ferreira,+T.A.E.&author=Soares,+L.&publication_year=2019&journal=Eurasian+Bull.+Math.&volume=2&pages=63%E2%80%9379.

G. M. Cordeiro, & R. D. Brito, “The beta power distribution”, Brazilian Journal of Probability and Statistics 26 (2012) 88. https://doi.org/10.1214/10-bjps124.

P. W. Gieser, M. N. Chang, P. V. Rao, J. J. Shuster & J. Pullen, ”Modelling cure rates using the Gompertz model with covariate information”, Stat Med. 17 (1998) 831. https://doi.org/10.1002/(sici)1097-0258(19980430)17:8%3C831::aid-sim790%3E3.0.co;2-g.

Published

2024-09-02

How to Cite

Transmuted cosine Topp-Leone G family of distributions: properties and applications. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2049. https://doi.org/10.46481/jnsps.2024.2049

Issue

Section

Mathematics & Statistics

How to Cite

Transmuted cosine Topp-Leone G family of distributions: properties and applications. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2049. https://doi.org/10.46481/jnsps.2024.2049