Computational investigation and biological activity of selected Schiff bases

Authors

  • Segun Oladipo Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, P.M.B. 2002, Nigeria
  • Adesola A. Adeleke Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, P.M.B. 2002, Nigeria
  • Abosede A. Badeji Department of Chemical Sciences, Tai Solarin University of Education, Ijagun, Ogun-State, Nigeria
  • Katherine I. Babalola Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, P.M.B. 2002, Nigeria
  • Ayomide H. Labulo Department of Chemistry, Federal University of Lafia, P.M.B. 146, Lafia, Nasarawa State, Nigeria
  • Ibrahim Hassan Department of Chemistry, Federal University of Lafia, P.M.B. 146, Lafia, Nasarawa State, Nigeria
  • Sadiq T. Yussuf Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, P.M.B. 2002, Nigeria
  • Samuel O. Olalekan Department of Physiology, Olabisi Onabanjo University, Ago-Iwoye, P.M.B. 2002, Nigeria

Keywords:

Schiff base, DFT, Molecular docking, Antibacterial

Abstract

Two Schiff bases, (E)-N-(4-bromophenyl)-1-(2,6-dichlorophenyl)methanimine (S1) and (E)-4-(((4-bromophenyl)imino)methyl)phenol (S2) were synthesized and elucidated using basic spectroscopic methods such as Fourier-transform-infrared, Ultraviolet-visible as well as 1H & 13C-NMR while purity of the compounds was ascertained by the means of elemental analysis. The stability, chemical reactivities and electronic properties of S1 and S2 were evaluated using Density Functional Theory (DFT). Energy band gap (?E) of S1 and S2 are 2.81 eV and 3.02 eV respectively and this inferred that S1 is more reactive as well as less stable than S2. The Molecular electrostatic potential (MEP) mapping evaluation showed that both S1 and S2 are having more of the yellow, green and red region than the blue region, signifying that these structures are prone to electrophilic attack. The compounds were screened against one Gram-negative (Staphylococcus aureus) and two Gram-positive bacteria (Klebsiella pneumoniae and Psedomonas aeruginosa) to evaluate their antibacterial potential.  S1 as well as S2 showed antibacterial potential against Staphylococcus aureus and exhibited less of no activity against Klebsiella pneumoniae and Escherichia coli. In silico studies of S1 and S2 against Staphylococcus aureus was carried out and the outcomes corroborate with experimental findings. Pharmacological evaluation of S1 and S2 showed that both compounds exhibited less violation of Lipinski’s rule of five (Ro5) which pose them to be less toxic and orally available.

Dimensions

S. A. Olagboye, T. L. Yusuf, S. D. Oladipo & S. J. Zamisa, “Crystal structure of (E)-1-(2-nitrophenyl)-N-(o-tolyl) methanimine, C14H12N2O2”, Zeitschrift fur Kristallographie-New Crystal Structures¨ 235 (2006) 833. https://doi.org/10.1515/ncrs-2020-0034.

T. L. Yusuf, S. D. Oladipo, S. A. Olagboye, S. J. Zamisa & G. F. Tolufashe, “Solvent-free synthesis of nitrobenzyl Schiff bases: Characterization, antibacterial studies, density functional theory and molecular docking studies”, Journal of Molecular Structure 1222 (2020) 128857. https://doi.org/10.1016/j.molstruc.2020.128857.

S. Gul, A. Alam, M. Assad, A. A. Elhenawy, M. S. Islam, S. A. A. Shah, Z. Parveen, T. A. Shah & M. Ahmad, “Exploring the synthesis, molecular structure and biological activities of novel Bis-Schiff base derivatives: A combined theoretical and experimental approach”, Journal of Molecular Structure 1306 (2024) 137828. https://doi.org/10.1016/j.molstruc.2024.137828.

S. D. Oladipo, R. C. Luckay, K. A. Olofinsan, V. A. Obakachi, S. J. Zamisa, A. A. Adeleke, A. A. Badeji, S. A. Ogundare, & B. P. George, “Antidiabetes and antioxidant potential of Schiff bases derived from 2naphthaldehye and substituted aromatic amines: Synthesis, crystal structure, Hirshfeld surface analysis, computational, and invitro studies”, Heliyon 10 (2024) e23174. https://doi.org/10.1016/j.heliyon.2023.e23174.

S. D. Oladipo, T. L. Yusuf, S. J. Zamisa, M. Shapi & T. J. Ajayi, “Synthesis, crystal structure, Hirshfeld surface analysis and DFT studies of N-(2, 6-diisopropylphenyl)-1-(4-methoxyphenyl) methanimine”, Journal of Molecular Structure 1241 (2021) 130620. https://doi.org/10.1016/j.molstruc.2021.130620.

G. Venkatesh, P. Vennila, S. Kaya, S. B. Ahmed, P. Sumathi, V. Siva, P. Rajendran & C. Kamal, “Synthesis and Spectroscopic Characterization of Schiff Base Metal Complexes, Biological Activity, and Molecular Docking Studies”, ACS omega 9 (2024) 8123. https://doi.org/10.1021/acsomega.3c08526.

B. Adalat, F. Rahim, M. Taha, S. Hayat, N. Iqbal, Z. Ali, A. A. Shah, A. Wadood, A. U. Rehman & K. M. Khan, “Synthesis of Benzofuran– based Schiff bases as anti-diabetic compounds and their molecular docking studies”, Journal of Molecular Structure 1265 (2022) 133287. https://doi.org/10.1016/j.molstruc.2022.133287.

A. A. Adeleke, S. D. Oladipo, S. J. Zamisa, I. A. Sanusi & B. Omondi, “DNA/BSA binding studies and in vitro anticancer and antibacterial studies of isoelectronic Cu (I)-and Ag (I)-pyridinyl Schiff base complexes incorporating triphenylphosphine as co-ligands”, Inorganica Chimica Acta 558 (2023) 121760. https://doi.org/10.1016/j.ica.2023.121760.

J. Ceramella, D. Iacopetta, A. Catalano, F. Cirillo, R. Lappano & M. S. Sinicropi, “A review on the antimicrobial activity of Schiff bases: Data collection and recent studies, Antibiotics 11 (2022) 191. https://doi.org/10.3390/antibiotics11020191.

M. Mishra, K. Tiwari, A. K. Singh & V. P. Singh, “Versatile coordination behaviour of a multi-dentate Schiff base with manganese (II), copper (II) and zinc (II) ions and their corrosion inhibition study, Inorganica Chimica Acta 425 (2015) 36. https://doi.org/10.1016/j.ica.2014.10.026.

A. A. Adeleke, M. S. Islam, O. Sanni, C. Mocktar, S. J. Zamisa & B. Omondi, “Aryl variation and anion effect on CT-DNA binding and in vitro biological studies of pyridinyl Ag (I) complexes”, Journal of Inorganic Biochemistry 214 (2021) 111266. https://doi.org/10.1016/j.jinorgbio.2020.111266.

T. L. Yusuf, S. D. Oladipo, S. Zamisa, H. M. Kumalo, I. A. Lawal, M. M. Lawal & N. Mabuba, “Design of new Schiff-Base Copper (II) complexes: Synthesis, crystal structures, DFT study, and binding potency toward cytochrome P450 3A4”, ACS omega 6 (2021) 13704. https://doi.org/10.1021/acsomega.1c00906.

S. D. Oladipo, B. Omondi & C. Mocktar, “Synthesis and structural studies of nickel(II)-and copper(II)-N, N?-diarylformamidine dithiocarbamate complexes as antimicrobial and antioxidant agents”, Polyhedron 170 (2019) 712. https://doi.org/10.1016/j.poly.2019.06.038.

S. D. Oladipo, B. Omondi, & C. Mocktar “Co(III) N, N?diarylformamidine dithiocarbamate complexes: Synthesis, characterization, crystal structures and biological studies”, Applied organometallic chemistry 34 (2020) e5610. https://doi.org/10.1002/aoc.5610.

E. Yousif, A. Majeed, K. Al-Sammarrae, N. Salih, J. Salimon, & B. Abdullah, “Metal complexes of Schiff base: preparation, characterization and antibacterial activity”, Arabian Journal of Chemistry 10 (2017) S1639. https://doi.org/10.1016/j.arabjc.2013.06.006.

S. D. Oladipo, O.I. Akinpelu, & B. Omondi, “Ligand-Guided Investigation of a series of Formamidine Based Thiuram Disulfides as potential Dual-Inhibitors of Cox-1 and Cox-2”, Chemistry & Biodiversity 20 (2023) e202200875. https://doi.org/10.1002/cbdv.202200875.

S. D. Oladipo, G. F. Tolufashe, C. Mocktar & B. Omondi, “Ag (I) symmetrical N, N?-diarylformamidine dithiocarbamate PPh3 complexes: Synthesis, structural characterization, quantum chemical calculations and in vitro biological studies”, Inorganica Chimica Acta 520 (2021) 120316. https://doi.org/10.1016/j.ica.2021.120316.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. S. Scalmani, V. P. G. A. Barone, G. A. Petersson, H. J. R. A. Nakatsuji & D. J. Fox, itGaussian 16 rev. c. 01, Wallingford CT 34 (2016). http://www.gaussian.com620(2009).

R. D. I. I. Dennington, T. A. Keith & J. M. Millam, GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS. (2016)

Y. Zhao & D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals”, Theor. Chem. Acc. 120 (2008) 215. https://doi.org/10.1007/s00214-007-0310-x.

V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern & L. A. Curtiss, “6-31G* basis set for third-row atoms”, Journal of Computational Chemistry 22 (2001) 976. https://doi.org/10.1002/jcc.1058.

F. Weigend, “Accurate Coulomb-fitting basis sets for H to Rn”, Physical chemistry chemical physics 8 (2006) 1057. https://doi.org/10.1039/B515623H.

L. Liu, L. Miao, L. Li, F. Li, Y. Lu, Z. Shang & J. Chen, “Molecular electrostatic potential: a new tool to predict the lithiation process of organic battery materials”, The Journal of Physical Chemistry Letters 9 (2018) 3573. https://doi.org/10.1021/acs.jpclett.8b01123.

T. Chaudhary, M. K. Chaudhary, S. Jain, P. Tandon & B. D. Joshi, “The experimental and theoretical spectroscopic elucidation of molecular structure, electronic properties, thermal analysis, biological evaluation, and molecular docking studies of isococculidine”, Journal of Molecular Liquids 391 (2023) 123212. https://doi.org/10.1016/j.molliq.2023.123212.

K. Fukui, T. Yonezawa & H. Shingu, “A molecular orbital theory of reactivity in aromatic hydrocarbons”, The Journal of Chemical Physics 20 (1952) 722. https://doi.org/10.1063/1.1700523.

E. D. Akpan, S. D. Oladipo, T. W. Quadri, L. O. Olasunkanmi, E. E. Nwanna, B. Omondi & E. E. Ebenso, “Formamidine-based thiuram disulfides as efficient inhibitors of acid corrosion of mild steel: electrochemical, surface, and density functional theory/monte carlo simulation studies”, ACS omega 7 (2022) 26076. https://doi.org/10.1021/acsomega.2c00985.

A. Asghar, M. M. Bello, A. A. A. Raman, W. M. A. W. Daud, A. Ramalingam & S. B. M. Zain, “Predicting the degradation potential of Acid blue 113 by different oxidants using quantum chemical analysis”, Heliyon 5 (2019) e02396. https://doi.org/10.1016/j.heliyon.2019.e02396.

N. Islam & D. C. Ghosh, “The electronegativity and the global hardness are periodic properties of atoms”, Journal of Quantum Information Science 1 (2011) 135. http://dx.doi.org/10.4236/jqis.2011.13019.

M. Bhatia, “An overview of conceptual-DFT based insights into global chemical reactivity of volatile sulfur compounds (VSCs)”, Computational Toxicology 29 (2023) 100295. https://doi.org/10.1016/j.comtox.2023.100295.

W. Yang & R. G. Parr, “Hardness, softness, and the fukui function in the electronic theory of metals and catalysis”, Proceedings of the National Academy of Sciences 82 (1985) 6723. https://doi.org/10.1073/pnas.82.20.6723.

R. G. Parr, L. V. Szentpaly & S. Liu, “Electrophilicity index”, Journal´ of the American Chemical Society 121 (1999) 1922. https://doi.org/10.1021/ja983494x.

S. D. Oladipo, S. J. Zamisa, A. A. Badeji, M. A. Ejalonibu, A. A. Adeleke, I. A. Lawal, A. Henni, & M. M. Lawal, “Ni2+ and Cu2+ complexes of N(2, 6-dichlorophenyl)-N-mesityl formamidine dithiocarbamate structural and functional properties as CYP3A4 potential substrates”, Scientific Reports 13 (2023) 13414. https://doi.org/10.1038/s41598-023-39502-x.

A. A. Adeleke, S. D. Oladipo, R. C. Luckay, E. O. Akintemi, K. A. Olofinsan, I. Babatunde Onajobi, S. T. Yussuf, S. A. Ogundare, O. M. Adeleke, & K. I. Babalola, “Synthesis and Therapeutic Potential of selected Schiff Bases: In vitro Antibacterial, Antioxidant, Antidiabetic, and Computational Studies”, ChemistrySelect 9 (2024) e202304967. https://doi.org/10.1002/slct.202304967.

O. Trott & A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, Journal of computational chemistry 31 (2010) 455. https://doi.org/10.1002/jcc.21334.

J. Eberhardt, D. Santos-Martins, A. F. Tillack & S. Forli, “AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings”, Journal of chemical information and modeling 61 (2021) 3891. https://doi.org/10.1021/acs.jcim.1c00203.

R. M. Humphries, J. Ambler, S. L. Mitchell, M. Castanheira, T. Dingle, J. A. Hindler, L. Koeth, & K. Sei, “CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests” Journal of clinical microbiology 56 (2018) 10. https://doi.org/10.1128/jcm.01934-17.

S. D. Oladipo, T. L. Yusuf, S. J. Zamisa, G. F. Tolufashe, K. A. Olofinsan, Z. Tywabi-Ngeva & N. Mabuba, “Synthesis, crystal structure with free radical scavenging activity and theoretical studies of Schiff bases derived from 1-naphthylamine, 2, 6-diisopropylaniline, and substituted benzaldehyde”, European Journal of Chemistry 12 (2021) 204. https://doi.org/10.5155/eurjchem.12.2.204-215.2088.

Z. Demircioglu, C. Albayrak & O. B? uy¨ ukg¨ ung¨ or, “Theoretical and exper-¨ imental investigation of (E)-2-([3, 4-dimethylphenyl) imino] methyl)-3methoxyphenol: Enol–keto tautomerism, spectroscopic properties, NLO, NBO and NPA analysis”, Journal of Molecular Structure 1065 (2014) 210. https://doi.org/10.1016/j.molstruc.2014.02.062.

P. Govindasamy, S. Gunasekaran & S. Srinivasan, “Molecular geometry, conformational, vibrational spectroscopic, molecular orbital and Mulliken charge analysis of 2-acetoxybenzoic acid”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 130 (2014) 329. https://doi.org/10.1016/j.saa.2014.03.056.

A. H. Pandith & N. Islam, “Comparative assessment of QSTR models based on density functional, hartree–fock, AM1, and PM3 methods for acute toxicity of aliphatic compounds toward Vibrio fischeri”, International Journal of Quantum Chemistry 113 (2013) 830. https://doi.org/10.1002/qua.24133.

J. I. Aihara, “Reduced HOMO? LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons”, The Journal of Physical Chemistry A 103 (1999) 7487. https://doi.org/10.1021/jp990092i.

S. D. Oladipo, C. Mocktar & B. Omondi, “In vitro biological studies of heteroleptic Ag (I) and Cu (I) unsymmetrical N, N?-diarylformamidine dithiocarbamate phosphine complexes; the effect of the metal center”, Arabian Journal of Chemistry 13 (2020) 6379. https://doi.org/10.1016/j.arabjc.2020.05.039.

H. Lade & J. S. Kim, “Bacterial targets of antibiotics in methicillinresistant Staphylococcus aureus”, Antibiotics 10 (2021) 398. https://doi.org/10.3390/antibiotics10040398.

S. A. Khedkar, A. K. Malde & E. C. Coutinho, “Design of inhibitors of the MurF enzyme of Streptococcus pneumoniae using docking, 3D-QSAR, and de novo design”, Journal of chemical information and modeling 47 (2007) 1839. https://doi.org/10.1021/ci600568u.

M. Hossain, J. Farhana, M. T. Akbar, A. Chakraborty, S. Islam & A. Mannan, “Identification of potential targets in Staphylococcus aureus N315 using computer aided protein data analysis”, Bioinformation 9 (2013) 187. https://doi.org/10.6026%2F97320630009187.

A. Daina, O. Michielin, & V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Scientific reports 7 (2017) 42717. https://doi.org/10.1038/srep42717.

The molecular electrostatic potential (MESP) map and the FMO analysis of S1 and S2 computed at the M06-L/6-31G(d) level of theory.

Published

2024-07-21

How to Cite

Computational investigation and biological activity of selected Schiff bases. (2024). Journal of the Nigerian Society of Physical Sciences, 6(3), 2103. https://doi.org/10.46481/jnsps.2024.2103

Issue

Section

Chemistry

How to Cite

Computational investigation and biological activity of selected Schiff bases. (2024). Journal of the Nigerian Society of Physical Sciences, 6(3), 2103. https://doi.org/10.46481/jnsps.2024.2103