Optimal representation to High Order Random Boolean kSatisability via Election Algorithm as Heuristic Search Approach in Hopeld Neural Networks
Keywords:
Hopfield neural network, Election algorithm, Boolean satisfiability, Random kSatisfiabilityAbstract
This study proposed a hybridization of higher-order Random Boolean kSatisfiability (RANkSAT) with the Hopfield neural network (HNN) as a neuro-dynamical model designed to reflect knowledge efficiently. The learning process of the Hopfield neural network (HNN) has undergone significant changes and improvements according to various types of optimization problems. However, the HNN model is associated with some limitations which include storage capacity and being easily trapped to the local minimum solution. The Election algorithm (EA) is proposed to improve the learning phase of HNN for optimal Random Boolean kSatisfiability (RANkSAT) representation in higher order. The main source of inspiration for the Election Algorithm (EA) is its ability to extend the power and rule of political parties beyond their borders when seeking endorsement. The main purpose is to utilize the optimization capacity of EA to accelerate the learning phase of HNN for optimal random k Satisfiability representation. The global minima ratio (mR) and statistical error accumulations (SEA) during the training process were used to evaluate the proposed model performance. The result of this study revealed that our proposed EA-HNN-RANkSAT outperformed ABC-HNN-RANkSAT and ES-HNN-RANkSAT models in terms of mR and SEA.This study will further be extended to accommodate a novel field of Reverse analysis (RA) which involves data mining techniques to analyse real-life problems.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Journal of the Nigerian Society of Physical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- Gabriel James, Anietie Ekong, Etimbuk Abraham, Enobong Oduobuk, Peace Okafor, Analysis of support vector machine and random forest models for predicting the scalability of a broadband network , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 3, August 2024
- L. G. Salaudeen, D. GABI, M. Garba, H. U. Suru, Deep convolutional neural network based synthetic minority over sampling technique: a forfending model for fraudulent credit card transactions in financial institution , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 2, May 2024
- Chinedu L. Udeze, Idongesit E. Eteng, Ayei E. Ibor, Application of Machine Learning and Resampling Techniques to Credit Card Fraud Detection , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
- Umaru C. Obini, Chukwu Jeremiah, Sylvester A. Igwe, Development of a machine learning based fileless malware filter system for cyber-security , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 4, November 2024
- Sherifdeen O. Bolarinwa, Eli Danladi, Andrew Ichoja, Muhammad Y. Onimisia, Christopher U. Achem, Synergistic Study of Reduced Graphene Oxide as Interfacial Buffer Layer in HTL-free Perovskite Solar Cells with Carbon Electrode , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
- Xiaojie Zhou, Majid Khan Majahar Ali, Farah Aini Abdullah, Lili Wu, Ying Tian, Tao Li, Kaihui Li, Air quality prediction enhanced by a CNN-LSTM-Attention model optimized with an advanced dung beetle algorithm , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- V Umarani, A Julian, J Deepa, Sentiment Analysis using various Machine Learning and Deep Learning Techniques , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 4, November 2021
- Timothy Kayode Samson, Francis Olatunbosun Aweda, Wind speed prediction in some major cities in Africa using Linear Regression and Random Forest algorithms , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 4, November 2024
- Umaru Hassan, Mohd Tahir Ismail, Improving forecasting accuracy using quantile regression neural network combined with unrestricted mixed data sampling , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 4, November 2023
- A. E. Ibor, D. O. Egete, A. O. Otiko, D. U. Ashishie, Detecting network intrusions in cyber-physical systems using deep autoencoder-based dimensionality reduction approach anddeep neural networks , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
You may also start an advanced similarity search for this article.

