Mathematical model analysis on the significance of surveillance and awareness on the transmission dynamics of diphtheria

Authors

  • James Andrawus Department of Mathematics, Federal University Dutse, 7156 Jigawa, Nigeria
  • Kayode Isaac Omotoso Department of Mathematics, Federal University Dutse, 7156, Jigawa, Nigeria
  • Agada Apeh Andrew Department of Mathematics, Prime University Abuja, Nigeria
  • Felix Yakubu Eguda Department of Mathematics, Federal University Dutse, 7156 Jigawa, Nigeria
  • Sunday Babuba Department of Mathematics, Federal University Dutse, 7156 Jigawa, Nigeria
  • Kabiru Garba Ibrahim Department of Mathematics, Federal University Dutse, 7156 Jigawa, Nigeria

Keywords:

Mathematical model, Analysis, Surveillance, Transmission, Diphtheria

Abstract

Corynebacterium diphtheriae is a respiratory pathogen. Diphtheria was a major source of disease and mortality, particularly in children under five years of age and those over forty years of age. However, due to the lack of vaccinations, the disease is still widespread in several countries, particularly after the COVID-19 pandemic. In light of the above reason, we propose a deterministic mathematical model to characterize the dynamics of diphtheria transmission, evaluating the effects of awareness and surveillance that other authors have not considered. The boundedness and positivity of the solution have been established. In addition, it has been investigated that if Rc < 1, the model shows a diphtheria-free equilibrium that is stable both locally and globally. According to the theoretical study, there is a distinct positive endemic equilibrium, and the corresponding control reproduction number is greater than one. The endemic equilibrium has also been shown to be globally asymptotically stable when the disease induces mortality, vaccination, booster vaccination, and isolation are zero. Both the diphtheria-free and the endemic equilibrium global stability are numerically justified. Model fitting and parameter estimation are obtained using the least-squares method. Numerical simulation reveals that the development of surveillance and awareness is effective in curtailing the spread of diphtheria infection. Finally, the theoretical and numerical result shows that with surveillance and awareness, the disease can be eradicated in the population in less than ten years.

Dimensions

[1] Centre for academic research (CAR), “CAR 2023”, 2023. [Online]. https://www.ijssb.com/index.php/car.

[2] I. S. Fauzi, N. Nural, A. M. Sari, I. B. Wardani, D. Taurustiati, P. Simanullang & B. W. Lestari, “Assessing the impact of booster vaccination on diphtheria transmission: Mathematical modelling and risk zone mapping”, Global Impact of Chinese Roots 3 (2024) 234. http://www.keaipublishing.com/idm.

[3] D. Makeri, P. D. Peter & T. Pius, “Understanding the trend of diphtheria outbreak in Nigeria”, Diphtheria Outbreak in Nigeria 3 (2023) 42. https://doi.org.10.5958/KJHS-2023-3-2-05.

[4] K. Zakikhany & A. Efstration, “Diphtheria in Europe: current problems and new challenges”, Future Microbiology 7 (2012) 595. https://doi.org/10.2217/fmb.12.24.

[5] T. Chao, L. Lu, L. Zhang, R. Huang, Z. Liu, B. Zhou & Y. Liang, “An independent model for specific neutrophil depletion by diphtheria toxin in mice”, Science China Life Science 64 (2021) 1227. https://doi.org/10.1007/s/1427-020-1839-3.

[6] A. Skibinski, A. G. David, B. C. Baudner, M. Singh & D. T. O?Hagan, “Combination vaccines”, Journal of Global Infectious Diseases 3 (2011) 63. https://doi.org/10.4103/0974-777X.77298.

[7] Mayo Clinic, “Diphtheria 2023”, (2023). [Online]. https://www.mayoclinic.org/disease-condition/diphtheria/symptoms-causes/syc-20351897.

[8] Mayo Clinic, “Diphtheria. Causes and symptoms”, 2024. [Online]. https://www.mayoclinic.org/disease-conditions/diphtheria/symptoms-cause/syc-20351897.

[9] World Health Organization, “Diphtheria facts sheet”, 2023. [Online]. https://www.who.int/news-room/fact-sheets/detail/diphtheria.

[10] A. A. Salim & A. A. Ayoade, “Mathematical modelling of the effect of vaccination on the dynamics of infectious disease”, Nepal Journal of Mathematical Sciences (NJMS) 3 (2023) 212. https://doi.org/10.3126/njmathsci.v4/1.53151.

[11] I. Adeifa, “Official statement following the first reported confirmed case of diphtheria in FCT, Abuja”, 2023. [Online]. https://ncdc.gov.ng/news/489/officialstatementfollowing/the/firstreported/confirmed/case/ofdiphtheria/inFCT/Abuja.

[12] N. Izzati & A. Andriani, “Dynamical analysis of diphtheria epidemic model with natural immunity rate on exposed individuals”, Journal of Physics: Conference Series 1869 (2021) 012117. https://doi.org/10.1088/1742-6596/1869/1/012117.

[13] F. Ilahi & A. Widiana, “The effectiveness of vaccine in the outbreak of diphtheria: mathematical model and simulation”, IOP Conference Series: Materials Science and Engineering 434 (2018) 012006. https://doi.org/10.1088/1757-899X/434/1/012006.

[14] N. Izzati, A. Andrinni & R. Robi’aqolbi, “Optimal control of the diphtheria epidemic model with prevention and treatment”, Journal of Physics: Conference Series 1663 (2020) 012042. https://do10.1088/1742-6596/1663/1/012042.

[15] F. Lecorvaisier, D. Pontier, B. Soubeyrand & D. Fouchet, “Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria”, Ecological Modelling 487 (2024) 110569. https://doi.org/10.1016/j.ecolmodel.2023.110569.

[16] C. E. Madubueze & K. A. Tijani, “A deterministic mathematical model for optimal control of diphtheria disease with booster vaccination”, Healthcare Analytics 3 (2023) 100281. https://doi.org/10.1016/j.health.2023.100281.

[17] L. Valek & I. Tegeder, “Failure of the diphtheria toxin model to induce Parkinson-like behavior in mice”, International Journal of Molecular Science 22 (2021) 9494. https://doi.org/10.3390/ijms22179494.

[18] K. Sornbondit, W. Triampo & C. Modchang, “Mathematical modelling of diphtheria transmission in Thailand”, Computers in Biology and Medicine 87 (2017) 162. https://doi.org/10.1016/j.compbiomed.2017.05.031.

[19] R. Tosepu, J. Gunawan, D. S. Effendy, O. A. Ahamad & A. Farzan, “The outbreak of diphtheria in Indonesia”, The Pan African Medical Journal 31 (2018) 249. https://doi.org/10.11604/pamj.2018.31.24916629.

[20] Z. Islam, S. Ahmed, M. Rahman & M. Amin, “Global stability analysis and parameter estimation for a diphtheria model: A case study of an epidemic in Rohingya refugee camp in Bangladesh”, Computational and Mathematical Methods in Medicine 2022 (2022) 6545179. https://doi.org/10.1155/2022/6545179.

[21] S. O. Adewale, S. O. Ajao, I. A. Olapade, G. A. Adeniran & I. T. Mohammed, “Mathematical analysis of quarantine on the dynamic transmission of diphtheria disease”, International Journal of Science and Engineering Investigations 6 (2017) 1. https://arastirmax.com/en/system/files/dergiler/65306/makaleler/6/5/arastirmax-mathematical/analysis/quarantine/dynamical/transmission/diphtheria/disease.pdf.

[22] N. Rahmi & M. Pratama, “Model analysis of diphtheria disease transmission with immunization, quarantine, and hand washing behavior”, Journay Teori dan Aplikasi Matematikal (JTAM) 7 (2023) 462. https://doi.org/10.31764/jtam.v7;2.13466.

[23] J. E. Ngozika, E. B. Akponana, E. O. Arierhie & A. M. Okedoye, “Mathematical analysis of spread and control of diphtheria with emphasis on diphtheria antitoxin efficiency”, Journal of Theoretical and Applied Sciences 2 (2024) 152. https://doi.org/10.59324/ejtas.

[24] F. A. Oguntolu, O. J. Peter, A. Yusuf, “Mathematical model and analysis of the soil-transmitted helminth infections with optimal control”, Model. Earth Syst. Environ. 10 (2024) 883. https://doi.org/10.1007/s40808-023-01815-1.

[25] W. Atkinson, “Diphtheria epidemiology and prevention of vaccine-preventable diseases”, Public Health Foundation 12 (2012) 215. https://www.cdc.gov/vaccines/pubs/pinkbook/dip.html.

[26] Centre for Disease Control (CDC), “Diphtheria surveillance and trends”, 2025. [Online]. https://www.cdc.gov/diphtheria/php/surveillance/index.html.

[27] J. Andrawus, A. Abubakar, A. Yusuf, “Impact of public awareness on haemo-lyphatic and meningo-encephalitic stage of sleeping sickness using mathematical model approach”, Eur. Phys. J. Spec. Top. 2024 (2024) 1. https://doi.org/10.1140/epjs/s11734-024-01417-7.

[28] J. Andrawus, M. A. Iliyasu Muhammad, D. B. Akawu Denue, H. Abdul, A. Yusuf & S. Salahshour, “Unraveling the importance of early awareness strategy on the dynamics of drug addiction using mathematical modeling approach”, Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (2024) 1. https://doi.org/10.1063/5.0203892.

[29] C. Castillo-Charvez & B. Song, “Dynamical model of tuberculosis and their applications”, Math. Biosci 1 (2004) 361. https://doi.org/10.3934/mbe.2004.1.361.

[30] K. G. Ibrahim, J. Andrawus, A. Abubakar et al., “Mathematical analysis of chickenpox population dynamics unveiling the impact of booster in enhancing recovery of infected individuals”, Model. Earth Syst. Environ. 11 (2025) 46. https://doi.org/10.1007/s40808-024-02219-5.

[31] P. Van De Driessche & J. Watmough, “Reproduction number and sub threshold endemic equilibrium for compartmental models of disease transmission”, Mathematical Biosciences 180 (2002) 29. https://doi.org/10.1016/s0025-5564(02)00108-6.

[32] O. J. Peter, H. S. Panigoro, A. Abidemi, “Mathematical model of COVID-19 pandemic with double dose vaccination”, Acta Biotheor 71 (2023) 9. https://doi.org/10.1007/s10441/023/09460/y.

[33] R. Musa, O. J. Peter & F. A Oguntolu, “A non-linear differential equation model of COVID-19 and seasonal influenza co-infection dynamics under vaccination strategy and immunity waning”, Healthcare Analytics 4 (2023) 100240. https://doi.org/10.1016/j.health.2023.100240.

[34] O. Diekmann, J. A. P. Heesterbeek & M. G. Roberts, “The construction of next-generation matrices for computational epidemic models”, J R Soc Interface 7 (2010) 873. https://doi.org/10.1098/rsit.2009.0386.

[35] B. A. Eloho, J. E. Ngozika & M. A. Okedoye, “Mathematical modeling of diphtheria transmission dynamics for effective strategies of prevention and control with emphasis on impact of vaccination and waxing immunity”, International Journal of Research in Engineering and Science (IJRES) 12 (2024) 1. https://www.ijres.org/papers/Volume-12/Issue-7/1207142153.pdf.

[36] S. M. Surayya & F. M. Hamza, “Biology and life sciences forum. Trends and geographical distribution of diphtheria in Nigeria”, Re-Emerging Disease 2023 (2023) 1. https://doi.org/10.3391/ECM2023-16693.

[37] J. Andrawus & F. E. Yakubu, “Mathematical analysis of a model for syphilis endemicity”, International Journal of Scientific Engineering and Applied Science (IJSEAS) 3 (2017) 48. https://ijseas.com/volume3/v3i8/ijseas20170804.pdf.

[38] J. P. Lasalle, “The stability of dynamical systems”, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia 1976 (1976) 1. https://epubs.siam.org/doi/book/10.1137/1.9781611970432.

[39] Y. U. Ahmad, J. Andrawus, A. Ado, Y. A. Maigoro, A. Yusuf, S. Althobaiti & U. T. Mustapha, “Mathematical modelling and analysis of human-to-human monkeypox virus transmission with post-exposure vaccination”, Modeling Earth Systems and Environment 10 (2024) 1. https://doi.org/10.1007/s40808-023-01920-1.

[40] J. Andrawus, A. Yusuf, U. T. Mustapha, A. S. Alshom-rani & D. Baleanu, “Unravelling the dynamics of Ebola virus with contact tracing as control strategy”, Fractals 31 (2023) 10. https://doi.org/10.1142/S0218348X2340159X.

[41] J. Andrawus, Y. U. Ahmad, A. A. Andrew, A. Yusuf, S. Qureshe, B. Akawu, H. Abdul & S. Salahshour, “Impact of surveillance in human-to-human transmission of monkeypox virus”, The European Physical Journal Special Topics 234 (2024) 1. https://doi.org/10.1140/epjs/s11734-024-01346-5.

[42] U. T. Mustapha, A. I. Muhammad, A. Yusuf, A. Nesreen, A. I. Aliyu & J. Andrawus, “Mathematical dynamics of meningococcal meningitis: Examining carrier diagnosis and prophylaxis treatment”, Int. J. Appl. Comput. Math 11 (2025) 77. https://doi.org/10.1007/s40819-025-01890-1.

Published

2025-11-01

How to Cite

Mathematical model analysis on the significance of surveillance and awareness on the transmission dynamics of diphtheria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2618. https://doi.org/10.46481/jnsps.2025.2618

Issue

Section

Mathematics & Statistics

How to Cite

Mathematical model analysis on the significance of surveillance and awareness on the transmission dynamics of diphtheria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2618. https://doi.org/10.46481/jnsps.2025.2618