An exploration of thermal characteristics of a permeable inclined moving inverted exponential fully wet magnetized stretching/shrinking fin

Authors

  • M. Siddalinga Prasad
    Department of Mathematics, Siddaganga Institute of Technology, Tumakuru 572103, India

Keywords:

Transposed exponential fin, Magnetized fin, Wet porous parameter, Moving fin, Power index

Abstract

The effective cooling technology aims at removing the excess heat from the thermal components, equipment, and systems by ensuring their reliable operation and proper functioning. The fins play a vital role in such phenomena among various passive and active cooling options. In the present work, the thermal performance of a magnetized, fully wet, moving, porous, convective-radiative longitudinal inverted exponential oblique fin subjected to a shrinking/stretching mechanism is investigated numerically. The problem is modeled as a second-order non-linear ordinary differential equation, which is transformed into a non-dimensional equation, and using bvp4c of MATLAB, a numerical solution is obtained. The impacts of geometric and flow factors such as Hartmann number, wet porous parameter, Peclet number, stretching/shrinking parameter, etc., on the thermal characteristics and fin's base heat transfer rate are analyzed, and the results are presented graphically. It is also inferred that the Peclet number, wet porous parameter, thermal conductivity parameter, and convective sink temperature accelerate heat transfer, whereas the Hartmann number and radiation number decelerates heat transfer. Further, shrinking intensifies the cooling than stagnant and stretching mechanisms. The current examinations set a platform for the engineers to design an efficient fin in heat transfer devices functioning under the influence of an active magnetic field set with a mechanism like a conveyor belt.

Dimensions

[1] A. D. Kraus, A. Aziz, J. Welty & D. P. Sekulic, “Extended surface heat transfer”, Applied Mechanics Reviews 54 (2001) 92. https://doi.org/10.1115/1.1399680. DOI: https://doi.org/10.1115/1.1399680

[2] Y. A. C¸engel & A. J. Ghajar, “Heat conduction equation”, in Heat Transfer: A Practical Approach, 2nd Edition, McGraw-Hill Higher Education, New York, United States, 2002, pp. 61–126. https://akademik.adu.edu.tr/fakulte/muhendislik/F001/D0005/P00003/Courses/ME304/1456148348/EN/SIHeat5eChap02lecture.pdf

[3] S. Kiwan, “Thermal analysis of natural convection porous fins”, Transport in Porous Media 67 (2007) 17. http://dx.doi.org/10.1007/s11242-006-0010-3. DOI: https://doi.org/10.1007/s11242-006-0010-3

[4] B. J. Gireesha & G. Sowmya, “Heat transfer analysis of an inclined porous fin using differential transform method”, International Journal of Ambient Energy 43 (2020) 3189. https://doi.org/10.1080/01430750.2020.1818619. DOI: https://doi.org/10.1080/01430750.2020.1818619

[5] M. Torabi, H. Yaghoobi & A. Aziz, “Analytical solution for convective–radiative continuously moving fin with temperature-dependent thermal conductivity”, International Journal of Thermophysics 33 (2012) 924. https://doi.org/10.1007/s10765-012-1179-z. DOI: https://doi.org/10.1007/s10765-012-1179-z

[6] S. Singh, D. Kumar & K. Rai, “Wavelet collocation solution for convective-radiative continuously moving fin with temperature dependent thermal conductivity”, International Journal of Engineering and Advanced Technology 2 (2013) 10. https://www.ijeat.org/wp-content/uploads/papers/v2i4/D1240042413.pdf.

[7] M. Sobamowo, A. Yinusa, M. Salami, O. Osih & B. Adesoye, “Heat transfer analysis of a rectangular moving porous fin with temperature dependent thermal conductivity and internal heat generation: Comparative and parametric studies”, Engineering Advances 1 (2021) 50. http://dx.doi.org/10.26855/ea.2021.12.004. DOI: https://doi.org/10.26855/ea.2021.12.004

[8] G. M. Sobamowo, A. A. Yinusa, H. Berrehal, R. O. Ola Gbadamosi, M. O. Salami, E. H. Abubakar & S. A. Oladosu, “Exploring the Effect of Peclet Number on the Transient Thermal Response of a Convective Radiative Moving Porous Fin”, Journal of Advanced Engineering and Computation 7 (2023) 57. http://dx.doi.org/10.55579/jaec.202371.392. DOI: https://doi.org/10.55579/jaec.202371.392

[9] P. Kaur & S. Singh, “Convective radiative moving fin with temperature dependent thermal conductivity, internal heat generation, and heat transfer coefficient”, Pramana Journal of Physics 96 (2022) 216. https://doi.org/10.1007/s12043-022-02459-z. DOI: https://doi.org/10.1007/s12043-022-02459-z

[10] C. G. Pavithra, B. J. Gireesha & M. L. Keerthi, “Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid”, Applied Mathematics and Mechanics 45 (2024) 197. https://doi.org/10.1007/s10483-024-3069-6. DOI: https://doi.org/10.1007/s10483-024-3069-6

[11] M. Torabi & A. Aziz, Thermal performance and efficiency of convective radiative T-shaped fins with temperature-dependent thermal conductivity, heat transfer coefficient and surface emissivity”, International Communications in Heat and Mass Transfer 39 (2012) 1018. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.007. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.07.007

[12] R. S. R. Gorla & A. Y. Bakier, “Thermal analysis of natural convection and radiation in porous fins”, International Communications in Heat & Mass Transfer 38 (2011) 638. http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.024. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.12.024

[13] M. L. Keerthi, B. J. Gireesha & G. Sowmya, “Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid”, International Communications in Heat & Mass Transfer 138 (2022) 106341. https://doi.org/10.1016/j.icheatmasstransfer.2022.106341. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106341

[14] P. L. Pavan Kumar, B. J. Gireesha, P. Venkatesh & M. L. Keerthi, “Transient thermal behaviour and efficiency in fully wet porous longitudinal fin: The influence of shape-dependent hybrid nanofluid and internal heat generation,” Numerical Heat Transfer, Part A: Applications (2024) 1. http://dx.doi.org/10.1080/10407782.2024.2331581. DOI: https://doi.org/10.1080/10407782.2024.2331581

[15] H. A. Hoshyar, D. D. Ganji & A. R. Majidian, “Least square method for porous fin in the presence of uniform magnetic field”, Journal of Applied Fluid Mechanics 9 (2016) 661. http://dx.doi.org/10.18869/acadpub.jafm.68.225.24245. DOI: https://doi.org/10.18869/acadpub.jafm.68.225.24245

[16] G. Oguntala, R. Abd-Alhameed & G. Sobamowo, “On the effect of magnetic field on thermal performance of convective-radiative fin with temperature-dependent thermal conductivity”, Karbala International Journal of Modern Science 4 (2018) 1. https://doi.org/10.1016/j.kijoms.2017.09.003. DOI: https://doi.org/10.1016/j.kijoms.2017.09.003

[17] B. Kundu, R. Das, P. A. Wankhade & K. S. Lee, “Heat transfer improvement of a wet fin under transient response with a unique design arrangement aspect”, International Journal of Heat and Mass Transfer 127 (2018) 1239. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.110. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.110

[18] R. Das & B. Kundu, “Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information”, International Communications in Heat and Mass Transfer 127 (2021) 105497. https://doi.org/10.1016/j.icheatmasstransfer.2021.105497. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105497

[19] B. J. Gireesha, G. Sowmya & N. Srikantha, “Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study”, International Journal of Ambient Energy 43 (2022) 3402. http://dx.doi.org/10.1080/01430750.2020.1831599. DOI: https://doi.org/10.1080/01430750.2020.1831599

[20] G. Sowmya, I. E. Sarris, C. S. Vishalakshi, R. S. V. Kumar & B. C. Prasannakumara, “Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant”, Symmetry 13 (2021) 1793. https://doi.org/10.3390/sym13101793. DOI: https://doi.org/10.3390/sym13101793

[21] R. Girish, A. Salma, P. V. Ananth Subray, B. N. Hanumagowda, S. V. K. Varma, K. V. Nagaraja, J. Singh Chohan, K. Umair, A. M. Hassan & F. Gamaoun, “Effect of temperature-dependent internal heat generation over exponential and dovetail convective-radiative porous fin wetted in hybrid nanofluid”, Case Studies in Thermal Engineering 49 (2023) 103214. https://doi.org/10.1016/j.csite.2023.103214. DOI: https://doi.org/10.1016/j.csite.2023.103214

[22] A. Abdulrahman, F. Gamaoun, R. S. Varun Kumar, U. Khan, H. S. Gill, K. V. Nagaraja, S. M. Eldin & A. M. Galal, “Study of thermal variation in a longitudinal exponential porous fin wetted with TiO₂–SiO₂/hexanol hybrid nanofluid using hybrid residual power series method”, Case Studies in Thermal Engineering 43 (2023) 102777. https://doi.org/10.1016/j.csite.2023.102777. DOI: https://doi.org/10.1016/j.csite.2023.102777

[23] M. Turkyilmazoglu, “Heat transfer from moving exponential fins exposed to heat generation”, International Journal of Heat and Mass Transfer 116 (2018) 346. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091

[24] M. Jing, S. Yasong & L. Benwen, “Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method”, International Journal of Thermal Sciences 118 (2017) 475. https://doi.org/10.1016/j.ijthermalsci.2017.05.008. DOI: https://doi.org/10.1016/j.ijthermalsci.2017.05.008

[25] P. K. Roy, A. Mallick, H. Mondal & P. A. Sibanda, “Modified decomposition solution of triangular moving fin with multiple variable thermal properties”, Arabian Journal for Science and Engineering 43 (2018) 1485. https://doi.org/10.1007/s13369-017-2983-3. DOI: https://doi.org/10.1007/s13369-017-2983-3

[26] B. J. Gireesha, M. L. Keerthi & G. Sowmya, “Effects of stretching/shrinking on the thermal performance of a fully wetted convective-radiative longitudinal fin of exponential profile”, Applied Mathematics and Mechanics (English Edition) 43 (2022) 389. https://doi.org/10.1007/s10483-022-2836-6. DOI: https://doi.org/10.1007/s10483-022-2836-6

[27] M. M. Torabi, A. Aziz & K. Zhang, “A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities”, Energy 51 (2013) 243. https://doi.org/10.1016/j.energy.2012.11.052. DOI: https://doi.org/10.1016/j.energy.2012.11.052

[28] M. Turkyilmazoglu, “Stretching/shrinking longitudinal fins of rectangular profile and heat transfer”, Energy Conversion and Management 91 (2015) 199. https://doi.org/10.1016/j.enconman.2014.12.007. DOI: https://doi.org/10.1016/j.enconman.2014.12.007

[29] A. Aziz & M. Torabi, “Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature”, Heat Transfer-Asian Research 41 (2012) 99. https://doi.org/10.1002/htj.20408. DOI: https://doi.org/10.1002/htj.20408

[30] V. R. Raikar, K. Lakshminarayanachari, K. Bharathi & C. Bhaskar, “Mathematical advection-diffusion model of primary and secondary pollutants emitted from the point source with mesoscale wind and removal mechanisms”, Journal of the Nigerian Society of Physical Sciences 7 (2025) 2337. https://doi.org/10.46481/jnsps.2025.2337. DOI: https://doi.org/10.46481/jnsps.2025.2337

Physical configuration of inclined inverted exponential porous  magnetized fin

Published

2025-07-25

How to Cite

An exploration of thermal characteristics of a permeable inclined moving inverted exponential fully wet magnetized stretching/shrinking fin. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2658. https://doi.org/10.46481/jnsps.2025.2658

Issue

Section

Mathematics & Statistics

How to Cite

An exploration of thermal characteristics of a permeable inclined moving inverted exponential fully wet magnetized stretching/shrinking fin. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2658. https://doi.org/10.46481/jnsps.2025.2658