Isolation and investigation of the structure of silicon quantum dots from rice husk ultrafine silica for possible applications in nanoelectromechanical systems

Authors

  • K. M. Omatola
    Department of Physics, Kogi State University, Anyigba, Nigeria
  • A. D. Onojah
    Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria
  • R. Larayetan
    Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Nigeria
  • A. O. Ohiani
    Department of Physics, Kogi State University, Anyigba, Nigeria
  • I. I. Oshatuyi
    Department of Physics, Kogi State University, Anyigba, Nigeria
  • M. B. Ochang
    Department of Industrial Physics, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria
  • O. Anawo
    Department of Physics, Kogi State University, Anyigba, Nigeria
  • P. Abraham
    Department of Physics, Kogi State University, Anyigba, Nigeria

Keywords:

Silicon quantum dots, Rice husk silica, Sol-gel, Magnesiothermic reduction

Abstract

Silicon quantum dots (SiQDs) are nanostructure semiconducting crystalline particles of silicon, usually less than 10 nm in size. Usually, silicon is extracted from its oxide through a carbothermic process using electric submerged arc furnaces at temperatures exceeding 2000 ºC, a highly energy-intensive method and detrimental to silicon oxide's structural properties, resulting in carbon dioxide emissions. In this work, we propose a two-step green approach involving sol-gel synthesis and solid state magnesiothermic reduction at 700 ºC to produce silicon quantum dots from rice husk ash. This method prevents strain, fracture, and vaporization associated with direct reduction methods at higher temperatures, which emit greenhouse gases and vaporize silicon. The produced silicon quantum dots were characterized using Energy Dispersive Spectroscopy (EDS), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) techniques. A total total yield of 77.76% silicon, with average particle and crystallite sizes of 2.51 nm and 2.69 nm, respectively was observed. The material exhibited a dislocation density of 0.14 (14 %) lines/nm2, strain of 0.0467 (4.67%), stress of 7.94 GPa, Young modulus of 170 GPa, and energy density of 32.50 GJm-3. These indicate robust mechanical properties that suitable for nanoelectromechanical systems(NEMS) fabrication. In addition, this eco-friendly method used in this work utilizes rice husk silica which prevent the use of synthetic and harmful silica precursors. Thus, enhances sustainability and cost-effectiveness in accordance with green synthesis principles and the use of local resources.



Dimensions

[1] S. Ghosh, S. Saha & D. Das, “Silicon: a critical review on its role in modern electronic and photonic devices”, Materials Today: Proceedings 18 (2019) 4326. https://doi.org/10.1016/j.matpr.2019.07.404. DOI: https://doi.org/10.1016/j.matpr.2019.07.404

[2] S. Morozova, M. Alikina, A. Vinogradov & M. Pagliaro, “Silicon quantum dots: Synthesis, encapsulation, and application in light – emitting diodes”, Frontiers in Chemistry 8 (2020) 191. https://doi.org/10.3389/fchem.2020.00191. DOI: https://doi.org/10.3389/fchem.2020.00191

[3] D. Beri, “Silicon quantum dots: Surface matter, what next?”, Materials Advance 4 (2023) 3380. https://doi.org/10.1039/d2ma0984f. DOI: https://doi.org/10.1039/D2MA00984F

[4] M. A. Hopcroft & D. N. William, “What is the Young’s modulus of silicon?”, Journal of micromechanical systems 19 (2010) 229. https://doi.org/10.1109/JMEMS.2009.2039695. DOI: https://doi.org/10.1109/JMEMS.2009.2039697

[5] H. Yu, W. W. Zhang, S. Y. Lei, L. B. Lu, C. Sun & Q. A. Huang, “Study on vibration behavior of doubly clamped silicon nanowires by molecular dynamics”, Journal of Nanomaterials 2012 (2012) 342329. https://doi.org/10.1155/2012/342329. DOI: https://doi.org/10.1155/2012/342329

[6] K. Petersen, “Silicon as a mechanical material”, Proceedings of the IEEE 70 (1982) 420. https://doi.org/10.1109/PROC.1982.12331. DOI: https://doi.org/10.1109/PROC.1982.12331

[7] C. Bi, G. H. Tang, C. B. He, X. Yang & Y. Lu, “Elastic modulus prediction based on thermal conductivity for silica aerogels and fiber reinforced composites”, Ceramics International 48 (2022) 6691. https://doi.org/10.1016/j.ceramint.2021.11.219. DOI: https://doi.org/10.1016/j.ceramint.2021.11.219

[8] K. M. Omatola & A. D. Onojah, “Elemental analysis of rice husk ash using X-ray fluorescence technique”, International Journal of Physical Sciences 4 (2009) 189. https://doi.org/10.5897/IJPS.9000217.

[9] X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, W. Brian, W. Sheldon & J. Wu, “Silicon – based nanomaterials for lithium – ion batteries: A Review”, Advanced Energy Materials 4 (2014) 1300882. https://doi.org/10.1002/aenm.201300882. DOI: https://doi.org/10.1002/aenm.201300882

[10] J. Entwistle, A. Rennie & S. Patwardhan, “A review of magnesiothermic reduction of silica to porous silicon for lithium–ion battery applications and beyond”, Journal of Materials Chemistry A 6 (2018) 18344. https://doi.org/10.1039/C8TA06370B. DOI: https://doi.org/10.1039/C8TA06370B

[11] K. Lin, Y. Yu, J. Xi, H. Li, Q. Guo, J. Tong, & L. Su, “A fibre – coupled self – mixing Laser diode for the measurement of Young’s modulus”, Sensors 16 (2016) 928. https://doi.org/10.3390/s16060928. DOI: https://doi.org/10.3390/s16060928

[12] A. Ali, Y. W. Chiang & R. M. Santos, “X – ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications and research directions”, Minerals 12 (2022) 1. https://doi.org/10.3390/min12020205. DOI: https://doi.org/10.3390/min12020205

[13] K. M. Omatola, A. D. Onojah, A. N. Amah & I. Ahemen, “Synthesis and characterization of silica xerogel and aerogel from rice husk ash and pulverized beach sand via sol-gel route”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1609. https://doi.org/10.46481/jnsps.2023.5.1609. DOI: https://doi.org/10.46481/jnsps.2023.1609

[14] Y. Sakaguchi, M. Ishizaki, T. Kawahara, M. Fukai, M. Yoshiyagawa & F. Aratani, “Production of high purity silicon by carbothermic reduction of silica using AC – arc furnace with heated shaft”, ISIJ International 32 (1992) 643. https://doi.org/10.2355/isijinternational.32.643. DOI: https://doi.org/10.2355/isijinternational.32.643

[15] S. S. Oluyamo, O. F. Famutimi & M. O. Olasoji, “Isolation and characterization of high grade nanosilicon from coastal landform in Ilaje local government area of Ondo state,Nigeria”, African Scientific Reports 2 (2023) 82. https://doi.org/10.46481/asr.2023.2.1.82. DOI: https://doi.org/10.46481/asr.2023.2.1.82

[16] H. Sajid, K. S. Rakesh, S. K. Nishant & K. Gaurav, “Synthesis and characterization of crystalline nano silica from rice husk (agricultural waste) and its magnetic composites”, Research Square, 2022. [Online]. https://doi.org/10.21203/rs.3.rs-1785138/v1. DOI: https://doi.org/10.21203/rs.3.rs-1785138/v1

[17] I. W. Sutapa, A. W. Wahab, P. Taba & N. L. Nafie, “Dislocation, crystallite size distribution and lattice Strain of magnesium oxide nanoparticles”, Journal of Physics Conference Series 979 (2018) 1. https://doi.org/10.1088/1742-6596/979/1/012021. DOI: https://doi.org/10.1088/1742-6596/979/1/012021

[18] S. Sarka, S. D. Ramarao, T. Das, R. Das, C. P. Vinod, S. Chakraborty & S. C. Peter, “Unveiling the roles of lattice strain and descriptor species on Pt - like oxygen reduction activity in Pd-Bi catalysts”, American Chemical Society Publications 11 (2021) 800. https://doi.org/10.1021/acscatal.0c03415. DOI: https://doi.org/10.1021/acscatal.0c03415

[19] D. Kumar, M. Singh and A. K. Singh, “Crystallite size effect on lattice strain and crystal structure of B1/4 Sr3/4 M nO3 layered Perovskite Manganite”, American Institute of Physics CP 1953 (2018) 030185. https://doi.org/10.1063/1.5032520. DOI: https://doi.org/10.1063/1.5032520

[20] Heryanto, B. Abdullah, D. Tahir & Mahdalia, “Quantitative analysis of X-ray diffraction spectra for determine structural properties and deformation energy of Al, Cu and Si”, Journal of Physics, Conference series 1317 (2018) 012052. https://doi.org/10.1088/1742-6596/1317/1/012052. DOI: https://doi.org/10.1088/1742-6596/1317/1/012052

[21] A. J. Suhir & H. H. Khalid, “A comprehensive study of Williamson - Hall method and size - strain method through x - ray diffraction pattern of cadmium oxide nanoparticles”, AIP conference proceedings 2307 (2020) 020015. https://doi.org/10.1063/5.0033762. DOI: https://doi.org/10.1063/5.0033762

[22] C. F. Holder & R. E. Schaak, “Tutorial on powder x- ray diffraction for characterizing nanoscale materials”, American Chemical Society Nano 13 (2019) 7359. https://doi.org/10.1021/acsnano.9b05157. DOI: https://doi.org/10.1021/acsnano.9b05157

[23] U. Kalapathy, A. Proctor, & J. Shult, “An improved method for production of silica from rice husk ash”, Bioresource Technology 85 (2002) 285. https://doi.org/10.1016/S0960-8524(02)00116-5. DOI: https://doi.org/10.1016/S0960-8524(02)00116-5

[24] S. K. Mishra, H. Roy, A. K. Lohar, S. K. Samanta, S. Tiwari & K. Dutta, “A comparative assessment of crystallite size and lattice strain in differently cast A356 aluminium alloy”, IOP Conference Series, Materials Science and Engineering 75 (2015) 1. https://doi.org/10.1088/1757-899X/75/1/012001. DOI: https://doi.org/10.1088/1757-899X/75/1/012001

Published

2025-09-23

How to Cite

Isolation and investigation of the structure of silicon quantum dots from rice husk ultrafine silica for possible applications in nanoelectromechanical systems. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2690. https://doi.org/10.46481/jnsps.2025.2690

Issue

Section

Physics & Astronomy

How to Cite

Isolation and investigation of the structure of silicon quantum dots from rice husk ultrafine silica for possible applications in nanoelectromechanical systems. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2690. https://doi.org/10.46481/jnsps.2025.2690