Response of the magnetospheric convection electric field (MCEF) to geomagnetic storms during the solar cycle 24 declining phase

Authors

  • Nongobsom Bazié
    Laboratoire de Chimie Analytique, de Physique Spatiale et Energétique (L@CAPSE), Université Norbert ZONGO, Koudougou, Burkina Faso.
  • Christian Zoundi
    Laboratoire de Chimie Analytique, de Physique Spatiale et Energétique (L@CAPSE), Unversity Norbert ZONGO
  • M'BI Kaboré
    Laboratoire de Matériaux, d’Héliophysique et Environnement (La.M.H.E), ED/ST, Université Nazi BONI, 01 BP 1091, Bobo- Dioulasso, Burkina Faso
  • Alfred Jean Stéphane Dama
    Laboratoire de Chimie Analytique, de Physique Spatiale et Energétique (L@CAPSE), Université Norbert ZONGO, Koudougou, Burkina Faso.
  • Frédéric Ouattara
    Laboratoire de Chimie Analytique, de Physique Spatiale et Energétique (L@CAPSE), Université Norbert ZONGO, Koudougou, Burkina Faso.

Keywords:

Geomagnetic storm, Geoeffective interplanetary coronal mass ejections, Magnetospheric convection electric field, Solar cycle

Abstract

This article examines the magnetospheric convection electric field (MCEF) fluctuations during seven moderate to severe storms in the declining phase of solar cycle 24. The storms induced by ICMEs were selected based on specific conditions. The primary aim of this study is to assess the influence of geoeffective ICMEs on the MCEF. We conducted a cross-correlation analysis to examine the temporal delays between MCEF fluctuations and geomagnetic indices (Sym-H and AE), as well as the IMF Bz. A linear regression was employed to assess MCEF fluctuations in relation to variations in Sym-H, AE, and Bz. A strong correlation (R = 0.81) was seen between the average transit speed of ICMEs and MCEF fluctuations in the initial phase, underscoring the direct influence of ICMEs on the MCEF. ICMEs with speeds >= 800 km/s cause substantial MCEF variations during the storm's initial phase, with a variation of 0.08 mV/m for every one nT change in IMF Bz. During the complete evolution of the examined storms, fluctuations in the AE index precede those of the MCEF, with time delays between 21 and 44 minutes. MCEF variations exhibit a delay relative to Sym-H index fluctuations, with estimated intervals ranging from 60 to 306 minutes.

Dimensions

[1] E. N. Parker, “Dynamics of the interplanetary gas and magnetic fields”, Astrophysical Journal 128 (1958) 664. https://doi.org/10.1086/146579. DOI: https://doi.org/10.1086/146579

[2] B. T. Tsurutani, W. D. Gonzalez, F. Tang & Y. T. Lee, “Great magnetic storms”, Geophysical Research Letters 19 (1992) 73. https://doi.org/10.1029/91GL02783. DOI: https://doi.org/10.1029/91GL02783

[3] H. V. Cane, “Coronal mass ejections and Forbush decreases”, Space Science Reviews 93 (2000) 55. https://doi.org/10.1023/A:1026532125747. DOI: https://doi.org/10.1007/978-94-017-1187-6_4

[4] A. Subedi, B. Adhikari & R. K. Mishra, “Variation of solar wind parameters during intense geomagnetic storms”, Himalayan Physics 6 (2017) 80. https://doi.org/10.3126/hj.v6i0.18366. DOI: https://doi.org/10.3126/hj.v6i0.18366

[5] A. Silwal, S. P. Gautam, P. Poudel, M. Karki, B. Adhikari, N. P. Chapagain, R. K. Mishra, B. D. Ghimire & Y. Migoya-Orue, “Global positioning system observations of ionospheric total electron content variations during the 15 January 2010 and 21 June 2020 solar eclipse”, Radio Science 56 (2021) 1. https://doi.org/10.1029/2020RS007215. DOI: https://doi.org/10.1029/2020RS007215

[6] S. I. Akasofu, “Energy coupling between the solar wind and the magnetosphere”, Space Science Reviews 28 (1981) 121. https://doi.org/10.1007/BF00218810. DOI: https://doi.org/10.1007/BF00218810

[7] W. D. Gonzalez, B. T. Tsurutani & A. L. Clúa de Gonzalez, “Interplanetary origin of geomagnetic storms”, Space Science Reviews 88 (1999) 529. https://doi.org/10.1023/A:1005160129098. DOI: https://doi.org/10.1023/A:1005160129098

[8] C. Wang, J. P. Han, H. Li, Z. Peng & J. D. Richardson, “Solar wind-magnetosphere energy coupling function fitting: Results from a global MHD simulation”, Journal of Geophysical Research: Space Physics 119 (2014) 6199. https://doi.org/10.1002/2014JA019834. DOI: https://doi.org/10.1002/2014JA019834

[9] V. H. Luu, Etude du champ ´electromagn´etique et interpr´etation de donn´ees magnétotelluriques, Ph.D. dissertation, Département des Sciences de la Terre, Université Paris-Sud, Orsay, France, 2011. https://theses.hal.science/tel-00669815.

[10] M. Sugiura, “Hourly values of equatorial Dst for the IGY”, Annals of the International Geophysical Year 35 (1964) 9. Available online: https://ntrs.nasa.gov/api/citations/19650020355/downloads/19650020355.pdf.

[11] G. Rostoker, “Geomagnetic indices”, Reviews of Geophysics 10 (1972) 935. https://doi.org/10.1029/RG010i004p00935. DOI: https://doi.org/10.1029/RG010i004p00935

[12] H. Lundstedt, H. Gleisner & P. Wintoft, “Operational forecasts of the geomagnetic Dst index”, Geophysical Research Letters 29 (2002) 34. https://doi.org/10.1029/2002GL016151. DOI: https://doi.org/10.1029/2002GL016151

[13] N. Yu. Ganushkina, M. W. Liemohn & S. Dubyagin, “Current Systems in the Earth’s Magnetosphere”, Reviews of Geophysics 56 (2018) 309. https://doi.org/10.1002/2017RG000590. DOI: https://doi.org/10.1002/2017RG000590

[14] T. N. Davis & M. Sugiura, “Auroral electrojet activity index AE and its universal time variations”, Journal of Geophysical Research 71 (1966) 785. https://doi.org/10.1029/JZ071i003p00785. DOI: https://doi.org/10.1029/JZ071i003p00785

[15] R. M. Katus & M. W. Liemohn, “Similarities and differences in low-to middle-latitude geomagnetic indices”, Journal of Geophysical Research: Space Physics 118 (2013) 5149. https://doi.org/10.1002/jgra.50510. DOI: https://doi.org/10.1002/jgra.50501

[16] R. Hajra, B. T. Tsurutani & G. S. Lakhina, “The complex space weather events of 2017 September”, The Astrophysical Journal 899 (2020) 3. https://doi.org/10.3847/1538-4357/ab9c79. DOI: https://doi.org/10.3847/1538-4357/aba2c5

[17] B. T. Tsurutani & R. Hajra, “The interplanetary and magnetospheric causes of geomagnetically induced currents (GICs) > 10 A in the M¨ants¨al¨a Finland pipeline: 1999 through 2019”, Journal of Space Weather and Space Climate 11 (2021) 23. https://doi.org/10.1051/swsc/2021032. DOI: https://doi.org/10.1051/swsc/2021001

[18] R. K. Burton, R. L. McPherron & C. T. Russell, “An empirical relationship between interplanetary conditions and Dst”, Journal of Geophysical Research 80 (1975) 4204. https://doi.org/10.1029/JA080i031p04204. DOI: https://doi.org/10.1029/JA080i031p04204

[19] G. S. Lakhina & B. T. Tsurutani, “Geomagnetic storms: Historical perspective to modern view”, Geoscience Letters 3 (2016) 1. https://doi.org/10.1186/s40562-016-0037-4. DOI: https://doi.org/10.1186/s40562-016-0037-4

[20] P. Riley & J. J. Love, “Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties”, Space weather 15 (2017) 53. https://doi.org/10.1002/2016SW001470. DOI: https://doi.org/10.1002/2016SW001470

[21] E. Camporeale, “The challenge of machine learning in space weather: Nowcasting and forecasting”, Space Weather 17 (2019) 1166. https://doi.org/10.1029/2018SW002061. DOI: https://doi.org/10.1029/2018SW002061

[22] D. Sierra-Porta, J. D. Petro-Ramos, D. J. Ruiz-Morales, D. D. Herrera-Acevedo, A. F. Garc´ıa-Teheran & M. T. Alvarado, “Machine learning models for predicting geomagnetic storms across five solar cycles using Dst index and heliospheric variables”, Advances in Space Research 74 (2024) 3483. https://doi.org/10.1016/j.asr.2024.04.014. DOI: https://doi.org/10.1016/j.asr.2024.08.031

[23] Y. Peng, “Advancement and limitations in geomagnetic storm prediction models”, 3rd International Conference on Environmental Geoscience and Earth Ecology, Auckland, New Zealand, 2025, pp. 52–58. https://doi.org/10.54254/2753-8818/81/2025.21052. DOI: https://doi.org/10.54254/2753-8818/2025.21052

[24] W. D. Gonzalez, J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani & V. M. Vasyliunas, “What is a geomagnetic storm?” Journal of Geophysical Research: Space Physics 99 (1994) 5771. https://doi.org/10.1029/94JA00470. DOI: https://doi.org/10.1029/93JA02867

[25] C. A. Loewe & G. W. Pr¨olss, “Classification and mean behavior of magnetic storms”, Journal of Geophysical Research: Space Physics 102 (1997) 14209. https://doi.org/10.1029/96JA04020. DOI: https://doi.org/10.1029/96JA04020

[26] J. T. Gosling, D. J. McComas, J. L. Phillips & S. J. Bame, “Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections”, Journal of Geophysical Research: Space Research 96 (1991) 7831. https://doi.org/10.1029/91JA00316. DOI: https://doi.org/10.1029/91JA00316

[27] D. F. Webb, E. W. Cliver, N. U. Crooker, O. C. St. Cyr & B. J. Thompson, “Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms”, Journal of Geophysical Research: Space Physics 105 (2000) 7491. https://doi.org/10.1029/1999JA000275. DOI: https://doi.org/10.1029/1999JA000275

[28] K. E. J. Huttunen, R. Schwenn, V. Bothmer & H. E. J. Koskinen, “Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23”, Annales Geophysicae 23 (2005) 625. https://doi.org/10.5194/angeo-23-625-2005. DOI: https://doi.org/10.5194/angeo-23-625-2005

[29] I. G. Richardson & H. V. Cane, “Solar wind drivers of geomagnetic storms during more than four solar cycles”, Journal of Space Weather and Space Climate 2 (2012) A01. https://doi.org/10.1051/swsc/2012001. DOI: https://doi.org/10.1051/swsc/2012001

[30] E. K. J. Kilpua, J. G. Luhmann, L. K. Jian, C. T. Russell & Y. Li, “Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24?” Journal of Atmospheric and Solar-Terrestrial Physics 107 (2014) 12. https://doi.org/10.1016/j.jastp.2013.11.001. DOI: https://doi.org/10.1016/j.jastp.2013.11.001

[31] W. I. Axford, “Magnetospheric convection”, Reviews of Geophysics 7 (1969) 421. https://doi.org/10.1029/RG007i001p00421. DOI: https://doi.org/10.1029/RG007i001p00421

[32] V. M. Vasyliunas, “Mathematical models of magnetospheric convection and its coupling to the ionosphere”, in Particles and Fields in the Magnetosphere, B. M. McCormac (Ed.), Springer, Dordrecht, Netherlands, 1970, pp. 60–71. https://doi.org/10.1007/978-94-010-3284-1_6. DOI: https://doi.org/10.1007/978-94-010-3284-1_6

[33] C. R. Chappell, “Detached plasma regions in the magnetosphere”, Journal of Geophysical Research 79 (1974) 1861. https://doi.org/10.1029/JA079i013p01861. DOI: https://doi.org/10.1029/JA079i013p01861

[34] J. W. Dungey, “Interplanetary magnetic field and the auroral zones”, Physical Review Letters 6 (1961) 47. https://doi.org/10.1103/PhysRevLett.6.47. DOI: https://doi.org/10.1103/PhysRevLett.6.47

[35] J. W. Dungey, “Interactions of solar plasma with the geomagnetic field”, Planetary and Space Science 10 (1963) 233. https://doi.org/10.1016/0032-0633(63)90020-6. DOI: https://doi.org/10.1016/0032-0633(63)90020-5

[36] D. L. Carpenter, “Relations between the dawn minimum in the equatorial radius of the plasmapause and Dst, Kp, and local K at Byrd Station”, Journal of Geophysical Research 72 (1967) 2969. https://doi.org/10.1029/JZ072i011p02969. DOI: https://doi.org/10.1029/JZ072i011p02969

[37] M. J. Rycroft & J. O. Thomas, “The magnetospheric plasmapause and the electron density trough at the Alouette I orbit”, Planetary and Space Science 18 (1970) 65. https://doi.org/10.1016/0032-0633(70)90067-X. DOI: https://doi.org/10.1016/0032-0633(70)90067-X

[38] W. Lei, R. Gendrin, B. Higel & J. Berchem, “Relationships between the solar wind electric field and the magnetospheric convection electric field”, Geophysical Research Letters 8 (1981) 1099. https://doi.org/10.1029/GL008i010p01099. DOI: https://doi.org/10.1029/GL008i010p01099

[39] V. Bothmer & I. A. Daglis, Space Weather—Physics and Effects, Springer, Berlin and Heidelberg, Germany, 2007, pp. 103–130. https://doi.org/10.1007/978-3-540-34578-7_4. DOI: https://doi.org/10.1007/978-3-540-34578-7

[40] K.Salfo&O.Fr´ ed´ eric, “Magnetosphere convection electric field (MCEF) time variation from 1964 to 2009: Investigation on the signatures of the geoeffectiveness coronal mass ejections”, International Journal of Physical Sciences 13 (2018) 273. https://doi.org/10.5897/IJPS2018.4759. DOI: https://doi.org/10.5897/IJPS2018.4759

[41] I. Kacem, C. Jacquey, V. G´enot, B. Lavraud, Y. Vernisse, A. Marchaudon, O. Le Contel, H. Breuillard, T. D. Phan, H. Hasegawa & M. Oka, “Magnetic reconnection at a thin current sheet separating two interlaced flux tubes at the Earth’s magnetopause”, Journal of Geophysical Research: Space Physics 123 (2018) 1779. https://doi.org/10.1002/2017JA024537. DOI: https://doi.org/10.1002/2017JA024537

[42] A. Marchaudon, Observation et mod´ elisation des processus de couplage entre la magn´etosph`ere et l’ionosph`ere terrestres, Ph.D. dissertation, Laboratoire d’A´erologie, Universit´e Paul Sabatier, Toulouse, France, 2018. https://hal.science/tel-01959258v1.

[43] I. Revah & P. Bauer, Rapport d’activit´ e du Centre de Recherches en Physique de l’environnement Terrestre et Plan´etaire, CRPE, Issy-lesMoulineaux, France, 1982, pp. 38–40. https://hal-lara.archives-ouvertes.fr/hal-02192225.

[44] D. F. Smart, H. B. Garrett & M. A. Shea, “The prediction of AE, Ap, and Dst at time lags between 0 and 30 hours”, Solar Terrestrial Prediction Proceedings, Boulder, Colorado, USA, 1979, pp. 399–414. https://ntrs.nasa.gov/citations/19800016214.

[45] D. N. Baker, E. W. Hones Jr, J. B. Payne & W. C. Feldman, “A high time resolution study of interplanetary parameter correlations with AE”, Geophysical Research Letters 8 (1981) 179. https://doi.org/10.1029/GL008i002p00179. DOI: https://doi.org/10.1029/GL008i002p00179

[46] A. Meloni, A. Wolfe & L. J. Lanzerotti, “On the relationships between interplanetary quantities and the global auroral electrojet index”, Journal of Geophysical Research: Space Physics 87 (1982) 119. https://doi.org/10.1029/JA087iA01p00119. DOI: https://doi.org/10.1029/JA087iA01p00119

[47] Y. Nishimura, T. Kikuchi, J. Wygant, A. Shinbori, T. Ono, A. Matsuoka, T. Nagatsuma & D. Brautigam, “Response of convection electric fields in the magnetosphere to IMF orientation change”, Journal of Geophysical Research: Space Physics 114 (2009) A09206. https://doi.org/10.1029/2009JA014277. DOI: https://doi.org/10.1029/2009JA014277

[48] G. Rostoker, H.-L. Lam, & W. D. Hume,“Response time of the magnetosphere to the interplanetary electric field”, Canadian Journal of Physics 50 (1972) 544. https://doi.org/10.1139/p72-073. DOI: https://doi.org/10.1139/p72-073

[49] G.Inza, Z. Christian, K. Salfo & O. Fr´ed´eric, “Variability of the magnetospheric electric field due to high-speed solar wind convection from 1964 to 2009”, African Journal of Environmental Science and Technology 16 (2022) 1. https://doi.org/10.5897/AJEST2021.3075. DOI: https://doi.org/10.5897/AJEST2021.3075

[50] G. Inza, G. Karim, & O. Fr´ ed´eric, “Magnetospheric Convective Electric Field (MCEF): Comparative Diurnal Statistical Variability of Different Types of Shock and Magnetic Cloud Activity Days”, International Journal of Geosciences 16 (2025) 189. https://doi.org/10.4236/ijg.2025.164010. DOI: https://doi.org/10.4236/ijg.2025.164010

[51] K. Salfo, G. A. M. Fr´ed´eric, G. Inza & O. Fr´ed´eric, “Diurnal variability of the magnetospheric convective electric field (MCEF) from 1996 to 2019: Comparative investigation into the signatures of the geoeffectiveness of coronal mass ejections and magnetic clouds”, Scientific Research and Essays 18 (2023) 45. https://doi.org/10.5897/SRE2023.6772. DOI: https://doi.org/10.5897/SRE2023.6772

[52] D. A. St´ephane, K. Salfo, S. S. Alphonse & O. Fr´ ed´ eric, “Variability of the electric field of magnetospheric convection in recurrent activity during the solar cycle 24”, International Journal of Physical Sciences 18 (2023) 129. https://doi.org/10.5987/IJPS2023.5039. DOI: https://doi.org/10.5897/IJPS2023.5039

[53] N. Bazi´e, C. Zoundi, A. J. S. Dama & F. Ouattara, “Variability of the Magnetospheric Convection Electric Field (MCEF) Under Shock Activity During the Solar Cycle 24”, Applied Physics Research 16 (2024) 134. https://doi.org/10.5539/apr.v16n1p134. DOI: https://doi.org/10.5539/apr.v16n1p134

[54] J. Legrand & P. Simon, “Solar cycle and geomagnetic activity: A review for geophysicists. Part I. The contributions to geomagnetic activity”, Annales geophysicae 7 (1989) 565. Available online: https://www.ipgp.fr/∼legoff/Download-PDF/Soleil-Climat/IndicesAA/annales-geophysicaeI-89-7-565-578.pdf.

[55] J. L. Zerbo, C. Amory Mazaudier, F. Ouattara & J. D. Richardson, “Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009”, Annales Geophysicae 30 (2012) 421. https://doi.org/10.5194/angeo-30-421-2012. DOI: https://doi.org/10.5194/angeo-30-421-2012

[56] I. Azzouzi, Impact des ´ev´enements solaires sur l’ionisation de l’ionosph´ ere des moyennes et basses latitudes dans le secteur Europe Afrique, Ph.D. dissertation, D´epartement de Physique, Universit´ e Pierre et Marie Curie- Paris VI and Universit´e Mohammed V, Rabat, Morocco, 2016. https://theses.hal.science/tel-01883930.

[57] B.Nongobsom,K.Salfo, G.Karim&O.Fr´ed´eric, “Response of the Magnetospheric Convection Electric Field (MCEF) to Geomagnetic Storms During the Solar Cycle 24 Maximum Phase”, International Journal of Geophysics 2025 (2025) 9888419. https://doi.org/10.1155/ijge/9888419. DOI: https://doi.org/10.1155/ijge/9888419

[58] M. C. Kelley, B. G. Fejer & C. A. Gonzales, “An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field”, Geophysical Research Letters 6 (1979) 301. https://doi.org/10.1029/GL006i004p00301. DOI: https://doi.org/10.1029/GL006i004p00301

[59] A.Singh, V. S. Rathore, R. P. Singh & A. K. Singh, “Source identification of moderate (−100 nT < Dst < −50 nT) and intense geomagnetic storms (Dst < −100 nT) during ascending phase of solar cycle 24”, Advances in Space Research, 59 (2017), 1209. https://doi.org/10.1016/j.asr.2016.12.006. DOI: https://doi.org/10.1016/j.asr.2016.12.006

[60] P. M. de Siqueira, E. R. de Paula, M. Muella, L. F. C. Rezende, M. A. Abdu & W. D. Gonzalez, “Storm-time total electron content and its response to penetration electric fields over South America”, Annales Geophysicae 29 (2011) 1765. https://doi.org/10.5194/angeo-29-1765-2011. DOI: https://doi.org/10.5194/angeo-29-1765-2011

[61] S. V. Badman&S.W.H.Cowley,“Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines”, Annales Geophysicae 25 (2007) 941. https://doi.org/10.5194/angeo-25-941-2007. DOI: https://doi.org/10.5194/angeo-25-941-2007

[62] G. L. Siscoe, C. J. Farrugia & P. E. Sandholt, “Comparison between the two basic modes of magnetospheric convection: convection modes compared”, Journal of Geophysical Research 116 (2011) A5201. https://doi.org/10.1029/2010JA015842. DOI: https://doi.org/10.1029/2010JA015842

[63] A. Singh, V. S. Rathore, S. Kumar, S. S. Rao, S. K. Singh & A. K. Singh, “Effect of intense geomagnetic storms on low-latitude TEC during the ascending phase of the solar cycle 24”, Journal of Astrophysics and Astronomy 42 (2021) 99. https://doi.org/10.1007/s12036-021-09774-8. DOI: https://doi.org/10.1007/s12036-021-09774-8

[64] L. P. Shadrina, “Two types of geomagnetic storms and relationship between Dst and AE indexes”, E3S Web of Conferences 20 (2017) 01010. https://doi.org/10.1051/e3sconf/20172001010. DOI: https://doi.org/10.1051/e3sconf/20172001010

Dungey’s two models of the reconnecting magnetosphere.

Published

2025-08-13

How to Cite

Response of the magnetospheric convection electric field (MCEF) to geomagnetic storms during the solar cycle 24 declining phase. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2696. https://doi.org/10.46481/jnsps.2025.2696

Issue

Section

Physics & Astronomy

How to Cite

Response of the magnetospheric convection electric field (MCEF) to geomagnetic storms during the solar cycle 24 declining phase. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2696. https://doi.org/10.46481/jnsps.2025.2696