Half-metallic Characteristics of the Novel Half Heusler Alloys XCrSb (X=Ti, Zr, Hf )

https://doi.org/10.46481/jnsps.2022.297

Authors

  • Benjamin Iyorzor Department of Physics, University of Benin, Benin City, Nigeria.
  • Michael Babalola Department of Physics, University of Benin, Benin City, Nigeria.

Keywords:

Half-Heusler Alloys, Half-metallic ferromagnet (HMF), Spin-polarization, Band Structure, Density of state, Quasi-Harmonic Approximation (QHA)

Abstract

Ab-initio calculations are performed to examine the structural, mechanical, electronic, magnetic and thermodynamic properties of the half-Heusler ternary alloys XCrSb (X = H f , Ti, Zr). In this study, the spin-polarized density functional theory (DFT) method that is spin-polarized with generalised gradient approximation (GGA) are used to perform ab-initio calculations to investigate the physical properties of a novel half-Heusler ternary alloys XCrSb (X = H f , Ti, Zr). It was confirmed that the alloys are stable mechanically and exhibit ferromagnetic states (FM). The study reveals that the alloys portray half-metallic character with narrow energy gaps. And it also shows that they have a total magnetic moment of approximately 3ub. From the formation energy calculation, it shows that the alloys can be synthesized experimentally. Also, it was observed that they are mechanically stable. The heat capacities and Debye temperatures were also computed and they show high thermodynamic stability.

Dimensions

P. Hohenberg & W. Kohn. Inhomogeneous electron gas Phys. Rev. B 136 (1964) 864. DOI: https://doi.org/10.1103/PhysRev.136.B864

N. Mehmood, & R. Ahmad. Structural, electronic, magnetic and opticalm investigations of half-Heusler compounds YZSb (Z=Cr, Mn): FP-LAPW method. Journal of Superconductivity and Novel Magnetism 31 (2018) 879. DOI: https://doi.org/10.1007/s10948-017-4266-3

N. Mehmood, R. Ahmad, & G. Murtaza. Ab initio investigations of structural, elastic, mechanical, electronic, magnetic, and optical properties of half-Heusler compounds RhCrZ (Z= Si, Ge). Journal of Superconductivity and Novel Magnetism 30 (2017) 2481. DOI: https://doi.org/10.1007/s10948-017-4051-3

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova & D. M. Treger, Spintronics: a spin-based electronics vision for the future, (2001) Science 294 (2001) 1488. DOI: https://doi.org/10.1126/science.1065389

G. A. Prinz, Magnetoelectronics, Science 282 (1998) 1660. DOI: https://doi.org/10.1126/science.282.5394.1660

G. A. Prinz, Magnetoelectronics applications, J. Magn. Magn. Mater. 200 (1999) 57. DOI: https://doi.org/10.1016/S0304-8853(99)00335-2

F. Heusler & Verh. Dtsch, Uber magnetische manganlegierungen, (1903) Phys. Ges 12, 219.

P. J. Webster & K. R. A. Ziebeck, Alloys and Compounds of d-Elements with Main Group Elements. Part 2. Landolt-BAurnstein, New Series, Group III, vol 19c, ed. by H.R.J. Wijn, Springer, Berlin (1988) pp. 75aAS184.

K. R. A. Ziebeck & K. U. Neumann. Magnetic Properties of Metals (Landolt-Bornstein, New Series, Group III) 32 (2001) 64.

J. Pierre, R. V. Skolozdra, J. Tobola, S. Kaprzyk, C. Hordequin, M. A.

Kouacou, I. Karla, R. Currat & E. Lelievre-Berna. Properties on request

in semi-Heusler phases. Journal of alloys and compounds 262 (1997) 101. DOI: https://doi.org/10.1016/S0925-8388(97)00337-X

J. Tobola, J. Pierre, S. Kaprzyk, R. V. Skolozdra & M. A. Kouacou.

Crossover from semiconductor to magnetic metal in semi-Heusler phases

as a function of valence electron concentration. Journal of Physics: Condensed

Matter 10 (1998) 1013. DOI: https://doi.org/10.1088/0953-8984/10/5/011

J. Tobola& J. Pierre. Electronic phase diagram of the XTZ (X=Fe, Co,

Ni; T= Ti, V, Zr, Nb, Mn; Z= Sn, Sb) semi-Heusler compounds. Journal

of alloys and compounds 296 (2000) 243. DOI: https://doi.org/10.1016/S0925-8388(99)00549-6

J. Tobola, S. Kaprzyk, & P. Pecheur. Theoretical search for magnetic half Heusler semiconductors. physica status solidi (b) 236 (2003) 531. DOI: https://doi.org/10.1002/pssb.200301721

M. GilleBen & R. Dronskowski. A combinatorial study of full Heusler alloys by first principles computational methods. Journal of computational chemistry 30 (2009) 1290. DOI: https://doi.org/10.1002/jcc.21152

M. GilleBen & R. Dronskowski. A combinatorial study of inverse Heusler alloys by first principles computational methods. Journal of computational chemistry 31 (2010) 612. DOI: https://doi.org/10.1002/jcc.21358

D. Kieven, R. Klenk, S. Naghavi, C. Felser & T. Gruhn. I ???? II ???? V half- Heusler compounds for optoelectronics: Ab initio calculations. Physical Review B 81 (2010) 075208. DOI: https://doi.org/10.1103/PhysRevB.81.075208

T. Jungwirth, V. Novak, X. Marti, M. Cukr, F. MA˜ ¡ca, A. B. Shick, J. Masek, P. Horodyska, P. Nemec, V. Holy, J. Zemek, P. Kuzel, I. Nemec, B. P. Gallagher, R. P. Campion, C. T. Foxon & J .Wunderlich. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn- V compounds. Physical Review B 83 (2011) 035321. DOI: https://doi.org/10.1103/PhysRevB.83.035321

A. Roy, J. W. Bennett, K. M. Rabe & D. Vanderbilt. Half-Heusler semiconductors as piezoelectrics. Physical review letters 109 (2012) 037602. DOI: https://doi.org/10.1103/PhysRevLett.109.037602

T. Graf, P. Klaer, J. Barth, B. Balke, H. Elmers & C. Felser. Phase separation in the quaternary Heusler compound CoTi (1- x) MnxS b ???? A reduction in the thermal conductivity for thermoelectric applications. Scripta Materialia 63 (2010) 1216. DOI: https://doi.org/10.1016/j.scriptamat.2010.08.039

S. Sakurada & N. Shutoh. E ect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds. Applied Physics Letters 86 (2005) 082105. DOI: https://doi.org/10.1063/1.1868063

J. R. Sootsman, D. Y. Chung & M. G. Kanatzidis. New and Old Concepts in Thermoelectric Materials, Angewandte Chemie International Edition 48 (2009) 8616. DOI: https://doi.org/10.1002/anie.200900598

J. W. Bennett, K. F. Garrity, K. M. Rabe & D. Vanderbilt. Hexagonal ABC semiconductors as ferroelectrics. Physical review letters 109 (2012) 167602. DOI: https://doi.org/10.1103/PhysRevLett.109.167602

W. Feng, D. Xiao, Y. Zhang & Y. Yao. Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke- Johnson density functional. Physical Review B 82 (2010) 235121. DOI: https://doi.org/10.1103/PhysRevB.82.235121

S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser & S. C. Zhang. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature materials 9 (2010) 541. DOI: https://doi.org/10.1038/nmat2770

J. De Boeck, W. Van Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein & G. Borghs. Technology and materials issues in semiconductor-based magnetoelectronics. Semiconductor science and technology 17 (2002) 342. DOI: https://doi.org/10.1088/0268-1242/17/4/307

J. De Boeck, W. Van Roy, V. Motsnyi, Z. Liu, K. Dessein & G. Borghs. Hybrid epitaxial structures for spintronics. Thin Solid Films 412 (2002) 3. DOI: https://doi.org/10.1016/S0040-6090(02)00305-X

O. E. Osafile & J. O. Azi. Structural, electronic, elastic and mechanical properties of novel ZrMnAs half Heusler alloy from first principles. Physica B: Condensed Matter 571 (2019) 41. DOI: https://doi.org/10.1016/j.physb.2019.06.004

W. Huang, X. Wang, X. Chen, Wei Lu, L. Damewood, and C. Y. Fong. Structural and electronic properties of half-Heusler alloys PtXBi (with X= Mn, Fe, Co and Ni) calculated from first principles. Journal of Magnetism and Magnetic Materials 377 (2015) 252. DOI: https://doi.org/10.1016/j.jmmm.2014.10.068

M. I. Babalola, B. I. Adetunji, B. E. Iyorzor, & A. Yaya. Exploring the impact of hydrostatic pressure on the structural, electronic and mechanical properties of ZrNiPb half-Heusler alloy: A DFT approach. International Journal of Modern Physics B 32 (2018) 1850248. DOI: https://doi.org/10.1142/S021797921850248X

M. Mokhtari, F. Dahmane, G. Benabdellah, L. Zekri, S. Benalia, and N. Zekri. Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds. arXiv preprint arXiv:1812.08559 (2018). DOI: https://doi.org/10.5488/CMP.21.43705

G. Rogl, A. Grytsiv, M. G˜A, A. Tavassoli, C. Ebner, A. W˜A, S. Puchegger, V. Soprunyuk, W. Schranz, E. Bauer, H. Muller, M. Zehetbauer & P. Rogl. Mechanical properties of half-Heusler alloys. Acta Materialia 107 (2016) 178. DOI: https://doi.org/10.1016/j.actamat.2016.01.031

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo & A. Dal Corso. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter 21 (2009) 395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502

J. P. Perdew, K. Burke & M. Ernzerhof. Generalized gradient approximation made simple. Physical review letters 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

H. J. Monkhorst & J. D. Pack. Special points for Brillouin-zone integrations. Physical review B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

Z. Wu, X. Hao, X. Liu & J. Meng. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations. Physical Review B 75 (2007) 054115. DOI: https://doi.org/10.1103/PhysRevB.75.054115

G. V. SinKo & N. A. Smirnov. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. Journal of Physics: Condensed Matter 14 (2002) 6989. DOI: https://doi.org/10.1088/0953-8984/14/29/301

S. F. Pugh. XCII. Relations between the elastic moduli and the plasticproperties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823. DOI: https://doi.org/10.1080/14786440808520496

J. Himanshu, D. P. Rai, H. Lalhriatpuia, L. Amel & R. K. Thapa. A theoretical analysis of elastic and optical properties of half Heusler MCoSb (M=Ti, Zr and Hf). Heliyon 5 (2019) 01155. DOI: https://doi.org/10.1016/j.heliyon.2019.e01155

S. Boucetta Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound. Journal of Magnesium and Alloys 2 (2014) 59. DOI: https://doi.org/10.1016/j.jma.2014.04.001

S. Ghosh & S. Ghosh. Systematic understanding of half-metallicity ofternary compounds in Heusler and Inverse Heusler structures with 3d and 4d elements. Physica Scripta 94 (2019) 125001 DOI: https://doi.org/10.1088/1402-4896/ab0f6c

O. Amrich, M. E. A. Monir, H. Baltach, S. B. Omran, X. W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou & R. Khenata, "Half-metallic ferrimagnetic characteristics of Co2 YZ (Z=P, As, Sb, and Bi) new full-Heusler alloys: a DFT study", Journal of Superconductivity and Novel Magnetism, 31 (2018) 241. DOI: https://doi.org/10.1007/s10948-017-4206-2

O. L. Anderson, "A simplified method for calculating the Debye temperature from elastic constants", Journal of Physics and Chemistry of Solids 24 (1963) 909. DOI: https://doi.org/10.1016/0022-3697(63)90067-2

Q. Fan, Q. Wei, H. Yan, M. Zhang, Z. Zhang, J. Zhang & D. Zhang, "Elastic and electronic properties of Pbca-BN: First-principles calculations", Computational materials science 85 (2014) 80. DOI: https://doi.org/10.1016/j.commatsci.2013.12.045

F. Bakare, M. I. Babalola & B. E. Iyorzor. The role of alloying elements on the structural, mechanical and thermodynamic properties of Al3X binary alloy system (X=Mg, Sc and Zr): first principle calculations. Materials Research Express 4 (2017) 116502. DOI: https://doi.org/10.1088/2053-1591/aa9485

Published

2022-02-27

How to Cite

Iyorzor, B., & Babalola, M. (2022). Half-metallic Characteristics of the Novel Half Heusler Alloys XCrSb (X=Ti, Zr, Hf ). Journal of the Nigerian Society of Physical Sciences, 4(1), 138–145. https://doi.org/10.46481/jnsps.2022.297

Issue

Section

Original Research