Assessment of the nutritional and phytochemical composition of selected mushroom species grown in Southern Nigeria
Authors
-
Bethel Onyeka Ekute
Department of Chemistry, Faculty of Science, Federal University Lokoja, Lokoja, NigeriaDepartment of Chemistry, Faculty of Science, National Open University of Nigeria, Abuja
-
Muluh Emmanuel Khan
Department of Chemistry, Faculty of Science, Federal University Lokoja, Lokoja, Nigeria
-
Aloysius Akaangee Pam
Department of Chemistry, Faculty of Science, Federal University Lokoja, Lokoja, Nigeria
-
Jude Ehwevwerhere Emurotu
Department of Chemistry, Faculty of Science, Federal University Lokoja, Lokoja, Nigeria
Keywords:
Proximate analysis, GC-MS analysis, Macro-minerals, TerpenoidsAbstract
Mushrooms are increasingly gaining attention for their nutritional and therapeutic benefits due to their rich composition of essential nutrients and bioactive compounds. However, all-encompassing integrative data on Calocybe indica, Ganoderma lucidum, and Pleurotus djamor grown in southern Nigeria is lacking. This study aims to provide a detailed, parallel evaluation of the nutritional and phytochemical composition of these mushroom species through a multidimensional analysis. The proximate, mineral, and phytochemical contents of the mushrooms were determined following standard analytical methods, while the metabolites were identified using gas chromatography-mass spectrometry (GC-MS). The phytochemical, terpenoid, was of the highest level (2.25 ± 0.05 % to 15.91 ± 0.41 %), with Ganoderma lucidum having the highest value. In the GC-MS chromatograms of the methanol extracts of the mushrooms, the most prominent bioactive metabolites were cis–vaccenic acid (31.32 %) and n-hexadecenoic acid (27.75 %), ergosterol (28.02 %), and linoelaidic acid (37.83 %) for Calocybe indica, Ganoderma lucidum, and Pleurotus djamor, respectively. High amounts of carbohydrates, protein, fiber, and ash were recorded for all the species, with Ganoderma lucidum having the highest fiber content of 34.85 ± 0.74 %. Mg, Ca, and Fe were significantly higher in Ganoderma lucidum, while K is at the highest level in Calocybe indica (30119.05 mg/kg). These findings suggest that these mushrooms are potent sources of vital nutrients, with Ganoderma lucidum having superior antioxidant relevance. This research provides an indispensable basis for mushroom choice, formulation of functional foods and nutraceuticals, and optimization of health-promoting characteristics of the studied mushrooms.
[1] N. Sifat, F. Lovely, S. M. N. K. Zihad, Md. G. Hossain, J. A. Shilpi, I. D. Grice, M. S. Mubarak & S. J. Uddin, “Investigation of the nutritional value and antioxidant activities of common Bangladeshi edible mushrooms”, Clinical Phytoscience 6 (2020) 88. https://doi.org/10.1186/s40816-020-00235-3. DOI: https://doi.org/10.1186/s40816-020-00235-3
[2] J. Raman, H. Laskshmanan, K.-Y. Jang, M. Oh, Y.-L. Oh & J.-H. Im, “Nutritional composition and antioxidant activity of pink oyster mushrooms (Pleurotus djamor var. roseus) grown on a paddy straw substrate”, Journal of Mushrooms 18 (2020) 189. https://doi.org/10.14480/JM.2020.18.3.189.
[3] R. Singh, N. Kaur, R. Shri, A. P. Singh & G. S. Dhingra, “Proximate composition and element contents of selected species of Ganoderma with reference to dietary intakes”, Environmental Monitoring and Assessment 192 (2020) 270. https://doi.org/10.1007/s10661-020-08249-7. DOI: https://doi.org/10.1007/s10661-020-08249-7
[4] Q. Yu, M. Guo, B. Zhang, H. Wu, Y. Zhang & L. Zhang, “Analysis of nutritional composition in 23 kinds of edible fungi”, Journal of Food Quality 2020 (2020) 8821315. https://doi.org/10.1155/2020/8821315. DOI: https://doi.org/10.1155/2020/8821315
[5] A. N. Teke, M. E. Bi, L. M. Ndam & T. R. Kinge, “Nutrient and mineral components of wild edible mushrooms from the Kilum-Ijim forest, Cameroon”, African Journal of Food Science 15 (2021) 152. https://doi.org/10.5897/AJFS2021.2089. DOI: https://doi.org/10.5897/AJFS2021.2089
[6] I. C. Nnorom, S. O. Eze & P. O. Ukaogo, “Mineral contents of three wild-grown edible mushrooms collected from forests of South eastern Nigeria: an evaluation of bioaccumulation potentials and dietary intake risks”, Scientific Africana 8 (2020) e00163. https://doi.org/10.1016/j.sciaf.2019.e00163. DOI: https://doi.org/10.1016/j.sciaf.2019.e00163
[7] G. Jaworska, K. Pogon, A. Skrzypczak & E. Bernas, “Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption”, Journal of Food Science and Technology 52 (2015) 7944. https://doi.org/10.1007/s13197-015-1933-x. DOI: https://doi.org/10.1007/s13197-015-1933-x
[8] F. Watanabe, Y. Yabuta, T. Bito & F. Teng, “Vitamin B12 -containing plant food sources for vegetarians”, Nutrients 6 (2014) 1861. https://doi.org/10.3390/nu6051861. DOI: https://doi.org/10.3390/nu6051861
[9] C. Radulescu, L. C. Buruleanu, A. A. Georgescu & I. D. Dulama, “Correlation between enzymatic and non-enzymatic antioxidants in several edible mushrooms species”, in Food Engineering, IntechOpen: London, UK, 2019, pp. 1–38. https://doi.org/10.5772/intechopen.82578. DOI: https://doi.org/10.5772/intechopen.82578
[10] USFDA, 2021. https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/assets/InteractiveNFL_Vitamins&MineralsChart_October2021.pdf. Retrieved 16th November, 2024.
[11] A. Kumar, P. Birmal, M. Kumar, A. Jose, V. Tomer, E. Oz, C. Proestos, M. Zeng, T. Elobeid, K. Sneha & F. Oz, “Major phytochemicals: recent advances in health benefits and extraction method”, Molecules 28 (2023) 1. https://doi.org/10.3390/molecules28020887. DOI: https://doi.org/10.3390/molecules28020887
[12] Y. Yusran, E. Erniwati, A. Khumaidi, R. Pitopang & I. R. A. P. Jati, “Diversity of substrate type, ethno-mycology, mineral composition, proximate, and phytochemical compounds of the Schizophyllum commune Fr. in the area along Palu-Koro Fault, Central Sulawesi, Indonesia”, Saudi Journal of Biological Sciences 30 (2023) 103593. https://doi.org/10.1016/j.sjbs.2023.103593. DOI: https://doi.org/10.1016/j.sjbs.2023.103593
[13] S. Wu, S. Zhang, B. Peng, D. Tan, M. Wu, J. Wei, Y. Wang & H. Luo, “Ganoderma lucidum: a comprehensive review of phytochemistry, efficacy, safety and clinical study”, Food Science and Human Wellness 13 (2024) 568. https://doi.org/10.26599/FSHW.2022.9250051. DOI: https://doi.org/10.26599/FSHW.2022.9250051
[14] M. Kozarski, A. Klaus, D. Jakovljevic, N. Todorovic, K. J. Vundu, P. Petrovic, M. Niksic, M. M. Vrvic & L. van Griensven, “Antioxidants of edible mushrooms”, Molecules 20 (2015) 19489. https://doi.org/10.3390/molecules201019489. DOI: https://doi.org/10.3390/molecules201019489
[15] B. O. Ekute, “Screening and quantitative determination of phytochemical constituents of Pleurotus ostreatus and Pleurotus pulmonarius commonly grown in South-western Nigeria”, Sokoto Journal of Medical Laboratory Science 4 (2019) 132. https://sokjmls.com.ng/index.php/SJMLS/article/view/205.
[16] Z. M. Thu, K. K. Myo, H. T. Aung, M. Clericuzio, C. Armijos & G. Vidari, “Bioactive phytochemical constituents of wild edible mushrooms from Southeast Asia”, Molecules 25 (2020) 1972. https://doi.org/10.3390/molecules25081972. DOI: https://doi.org/10.3390/molecules25081972
[17] R. Zhao, Q. Chen & Y. M. He, “The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network”, Scientific Reports 8 (2018) 12680. https://doi.org/10.1038/s41598-018-30881-0. DOI: https://doi.org/10.1038/s41598-018-30881-0
[18] Y. Fu, L. Shi & K. Ding, “Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst”, International Journal of Biological Macromolecules 141 (2019) 693. https://doi.org/10.1016/j.ijbiomac.2019.09.046. DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.046
[19] D. O. Adekunle, E. O. Faboro & L. Lajide, “Identification and quantification of bioactive compounds in different extracts of Morinda lucida Benth (Rubiaceae) root using GC-MS analysis”, Journal of Nigerian Society of Physical Sciences 5 (2023) 1. https://doi.org/10.46481/jnsps.2023.5.1534. DOI: https://doi.org/10.46481/jnsps.2023.1534
[20] Y. A. Qaisi, I. Alfarrayeh, A. Al sarayreh, K. Khleifat & N. Abu-Nwas, “Assessment of antioxidant potential, cytotoxicity, and anticancer activity of methanolic extracts from selected wild medicinal plants”, Phytomedicine Plus 4 (2024) 100534. https://doi.org/10.1016/j.phyplu.2024.100534. DOI: https://doi.org/10.1016/j.phyplu.2024.100534
[21] M. A. Qutaibi & S. R. Kagne, “Exploring the phytochemical compositions, antioxidant activity, and nutritional potentials of edible and medicinal mushrooms”, International Journal of Microbiology 2024 (2024) 6660423. https://doi.org/10.1155/2024/6660423. DOI: https://doi.org/10.1155/2024/6660423
[22] J. O. Oni, F. A. Akomaye, A. A. Markson & A. C. Egwu, “GC-MS analysis of bioactive compounds in some wild-edible mushrooms from Calabar, Southern Nigeria”, European Journal of Biology and Biotechnology 1 (2020) 1. https://doi.org/10.24018/ejbio.2020.1.6.129. DOI: https://doi.org/10.24018/ejbio.2020.1.6.129
[23] M. Dimopoulou, A. Kolonas, S. Mourtakos, O. Androutsos & O. Gortzi, “Nutritional composition and biological properties of sixteen edible mushroom species”, Applied Sciences 12 (2022) 8074. https://doi.org/10.3390/app12168074. DOI: https://doi.org/10.3390/app12168074
[24] A. Bhardwaj & M. Kshipra, “Ganoderma spp: the royal mushroom for high-altitude ailments”, in Management of high-altitude pathophysiology, M. Kshipra, P. Sharma, A. Bhardwaj (Eds.), Academic Press, 2018, pp. 115–152. https://doi.org/10.1016/B978-0-12-813999-8.00007-0. DOI: https://doi.org/10.1016/B978-0-12-813999-8.00007-0
[25] R. N. Okigbo & S. I. Obanubi, “A study on the Ganoderma lucidum of Warri South Local Government Area”, Journal of Food Technology and Nutrition Science 2 (2020) 1. https://doi.org/10.47363/jftns/2020(2)103. DOI: https://doi.org/10.47363/JFTNS/2020(2)103
[26] M. Shashikant, A. Bains, P. Chawla, M. Fogarasi & S. Fogarasi, “The current status, bioactivity, food, and pharmaceutical approaches of Calocybe indica: a review”, Antioxidants 11 (2022) 1. https://doi.org/10.3390/antiox11061145. DOI: https://doi.org/10.3390/antiox11061145
[27] G. Chowdhury, R. Sharma & U. Sarkar, “Cultural studies and yield attributes of pink oyster mushroom (Pleurotus djamor) in West Bengal”, BioResources 19 (2024) 1696. https://doi.org/10.15376/biores.19.1.1696-1706. DOI: https://doi.org/10.15376/biores.19.1.1696-1706
[28] R. Sasidhara & T. Thirunalasundari, “Phytochemicals and antioxidant potentials of Pleurotus djamor”, Journal of Chemical and Pharmaceutical Research 6 (2014) 950. https://www.jocpr.com/abstract/phytochemicals-and-antioxidant-potentials-of-pleurotus-djamor-3295.html.
[29] M. E. Khan, C. E. Elum, A. O. Ijeomah, P. J. Ameji, I. G. Osigbemhe, E. E. Etim, J. V. Anyam, A. Abel & C. T. Agber, “Isolation, characterization, antimicrobial and theoretical investigation of some bioactive compounds obtained from the bulbs of Calotropis procera”, Journal of Nigerian Society of Physical Sciences 5 (2023) 1. https://doi.org/10.46481/jnsps.2023.1576. DOI: https://doi.org/10.46481/jnsps.2023.1576
[30] B. C. Anyanwu, O. U. Akoh & I. E. Otuokere, “Phytochemical screening and proximate analysis of the leaves of Launaea (Lactuca) taraxacifolia”, Journal of Chemical Society of Nigeria 47 (2022) 421. https://doi.org/10.46602/jcsn.v47i2.737. DOI: https://doi.org/10.46602/jcsn.v47i2.737
[31] D. R. Pant, N. D. Pant, D. B. Saru, U. N. Yadav & D. P. Khanal, “Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh”, Journal of Intercultural Ethnopharmacology 6 (2017) 170. https://doi.org/10.5455/jice.20170403094055. DOI: https://doi.org/10.5455/jice.20170403094055
[32] J. B. Harborne, Phytochemical methods, Chapman & Hall Ltd., London, England, 1973, pp. 49–188.
[33] O. O. Orole, “GC-MS evaluation, phytochemical and antinutritional screening of Ganoderma lucidum”, Journal of Advances in Biology and Biotechnology 5 (2016) 1. https://doi.org/10.9734/JABB/2016/24261. DOI: https://doi.org/10.9734/JABB/2016/24261
[34] C. V. Ratnavathi & V. V. Komala, “Sorghum grain quality”, in Sorghum biochemistry: an industrial perspective, C. V. Ratnavathi, J. V. Patil, U. D. Chavan (Eds.), Academic Press, 2016, pp. 1–61. https://doi.org/10.1016/B978-0-12-803157-5.00001-0. DOI: https://doi.org/10.1016/B978-0-12-803157-5.00001-0
[35] J. Mendham, R. C. Denney, J. D. Barnes & M. J. K. Thomas, Vogel’s textbook of quantitative chemical analysis, 6th ed., Pearson Education Ltd., 2008. https://chem.hbcse.tifr.res.in/wp-content/uploads/2019/10/vogels-textbook-of-quantitative-chemical-analysis-5th-edition.pdf.
[36] O. I. Cyriacus, C. M. Ezeji, M. C. Nwoko & C. G. Ezeh, “Productivity, proximate, and phytochemicals contents of Pleurotus ostreatus (Jacq. Ex. Fr) p. Kumm. fruit bodies produced on carbonized sawdust substrate”, Australian Journal of Science and Technology 5 (2021) 562. https://www.aujst.com/vol-5-2/AJST-5-2_HTML/AJST-5-562.html.
[37] C. S. Ezeonu & C. M. Ejikeme, “Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods”, New Journal of Science 2016 (2016) 5601327. https://doi.org/10.1155/2016/5601327. DOI: https://doi.org/10.1155/2016/5601327
[38] A. S. Patil, Plant secondary metabolites: isolation, characterization & biological properties, Studera Press, 2020, pp. 75–87. https://books.google.com.ng/books?id=VpTmDwAAQBAJ&pg=PA75&source=gbs_toc_r&cad=1#v=onepage&q&f=false.
[39] D.-C. B. Filho, J. Odimar, M. B. Filho, J. Pedro, D. S. Rafaela & P. R. Karina, “Extraction and quantification of oxalic acid in leaves of plant species used in the treatment of chronic non-communicable diseases”, Revista Colombiana de Ciencias Quimico-Farmaceuticas 51 (2022) 7. https://doi.org/10.15446/rcciquifa.v51n1.10260. DOI: https://doi.org/10.15446/rcciquifa.v51n1.102607
[40] J. C. Ifemeje, C. Egbuna, J. O. Eziokwudiaso & F. C. Ezebuo, “Determination of the anti-nutrient composition of Ocimum gratissimum, Corchorus olitorius, Murraya koenigii Spreng and Cucurbita maxima”, International Journal of Innovation and Scientific Research 3 (2014) 127. https://ijisr.issr-journals.org/abstract.php?article=IJISR-14-101-01.
[41] O. E. Udu-Ibiam, O. Ogbu, U. A. Ibiam, A. U. Nnachi, M. V. Agah, C. O. Ukaegbu, O. S. Chukwu, N. B. Agumah & K. I. Ogbu, “Phytochemical and antioxidant analyses of selected edible mushrooms, ginger, and garlic from Ebonyi State, Nigeria”, IOSR Journal of Pharmacy and Biological Sciences 9 (2014) 91. https://doi.org/10.9790/3008-09348691. DOI: https://doi.org/10.9790/3008-09348691
[42] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, USA. [Online]. https://webbook.nist.gov/chemistry/.
[43] IUPAC, Retention index, I, in column chromatography, IUPAC Compendium of Chemical Terminology (the “Gold Book”), 2nd ed., 1997. https://doi.org/10.1351/goldbook.R05360. DOI: https://doi.org/10.1351/goldbook.R05360
[44] E. Yemm & A. J. Willis, “The estimation of carbohydrates in plants by anthrone”, Biochemical Journal 57 (1954) 508. https://doi.org/10.1042/bj0570508. DOI: https://doi.org/10.1042/bj0570508
[45] AOAC Official Method 2003.05, Crude fat in feeds, cereal grains, and forages, in Official methods of analysis of AOAC international, 18th ed., AOAC Int. Arlington, VA, 2005, pp. 40–42.
[46] AOAC Official Method 978.10, Fiber (crude) in animal feed and pet food, in Official methods of analysis of AOAC international, 18th ed., AOAC Int. Gaithersburg, MD, 2005, pp. 46–47.
[47] AOAC Official Method 2001.11, Determination of protein (crude) in animal feed, forage (plant tissue), grain, and oilseeds. Block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. https://img.21food.cn/img/biaozhun/20100108/177/11285182.pdf.
[48] N. Thiex, “Evaluation of analytical methods for the determination of moisture, crude protein, crude fat, and crude fiber in distillers dried grains with solubles”, Journal of Association of Official Analytical Chemists International 92 (2009) 61. https://doi.org/10.1093/jaoac/92.1.61. DOI: https://doi.org/10.1093/jaoac/92.1.61
[49] AOAC Official Method 942.05, Ash of animal feed, in Official methods of analysis of AOAC international, 18th ed., AOAC Int. Gaithersburg, MD, 2005, p. 8. https://www.researchgate.net/publication/292783651_AOAC_2005.
[50] N. Thiex, L. Novotny & A. Crawford, “Determination of ash in animal feed: AOAC official method 942.05 revisited”, Journal of Association of Official Analytical Chemists International 95 (2012) 1392. https://doi.org/10.5740/jaoacint.12-129. DOI: https://doi.org/10.5740/jaoacint.12-129
[51] Md. H. Rashid, Z. Fardous, M. A. Z. Chowdhury, Md. K. Alam, Md. L. Bari, M. Moniruzzaman & S. H. Gan, “Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods”, Chemistry Central Journal 10 (2016) 7. https://doi.org/10.1186/s13065-016-0154-3. DOI: https://doi.org/10.1186/s13065-016-0154-3
[52] M. A. Gharib, H. A. Radwan & Y. A. Elhassaneen, “Nutrients and nutraceuticals content and in vitro biological activities of Reishi mushroom (Ganoderma lucidum) fruiting bodies”, Alexandria Science Exchange Journal 43 (2022) 301. https://doi.org/10.21608/ASEJAIQJSAE.2022.24571. DOI: https://doi.org/10.21608/asejaiqjsae.2022.245271
[53] O. Taofiq, S. A. Heleno, R. C. Calhelha, M. J. Alves, L. Barros, A. M. Gonzalez-Paramas, M. F. Barreiro & I. C. F. R. Ferreira, “The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits”, Food Chemistry and Toxicology 108 (2017) 139. https://doi.org/10.1016/j.fct.2017.07.051. DOI: https://doi.org/10.1016/j.fct.2017.07.051
[54] M. B. Isah, N. Tajudeen, M. I. Umar, Z. A. Alhafiz, A. Mohammed & M. A. Ibrahim, “Terpenoids as emerging therapeutic agents: cellular targets and mechanisms of action against protozoan parasites”, in Studies in natural products chemistry, Vol. 59, 2018, pp. 227–. https://doi.org/10.1016/B978-0-444-64179-3.00007-4. DOI: https://doi.org/10.1016/B978-0-444-64179-3.00007-4
[55] M. Fan, S. Yuan, L. Li, J. Zheng, D. Zhao, C. Wang, H. Wang, X. Liu & J. Liu, “Application of terpenoid compounds in food and pharmaceutical products”, Fermentation 9 (2023) 119. https://doi.org/10.3390/fermentation9020119. DOI: https://doi.org/10.3390/fermentation9020119
[56] Y. Matsumura, M. Kitabatake, S. Kayano & T. Ito, “Dietary phenolic compounds: their health benefits and association with the gut microbiota”, Antioxidants 12 (2023) 1. https://doi.org/10.3390/antiox12040880. DOI: https://doi.org/10.3390/antiox12040880
[57] P. Naknaen, T. Itthisoponkul & P. Charoenthaikij, “Proximate compositions, nonvolatile taste components and antioxidant capacities of some dried edible mushrooms collected from Thailand”, Food Measure 9 (2014) 259. https://doi.org/10.1007/s1.1694-015-9231-x. DOI: https://doi.org/10.1007/s11694-015-9231-x
[58] H. Nayak, A. Kushwaha, P. C. Behera, N. C. Shahi, K. P. S. Kushwaha, A. Kumar & K. K. Mishra, “The pink oyster mushroom, Pleurotus djamor (Agaricomycetes): a potent antioxidant and hypoglycemic agent”, International Journal of Medicinal Mushrooms 23 (2021) 29. https://doi.org/10.1615/IntJMedMushrooms.2021041411. DOI: https://doi.org/10.1615/IntJMedMushrooms.2021041411
[59] G. Sudha, A. Janardhanan, A. Moorthy, M. Chinnasamy, S. Gunasekaran, A. Thimmaraju & J. Gopalan, “Comparative study on the antioxidant activity of methanolic and aqueous extracts from the fruiting bodies of an edible mushroom Pleurotus djamor”, Food Science and Biotechnology 25 (2016) 371. https://doi.org/10.1007/S10068-016-0052-4. DOI: https://doi.org/10.1007/s10068-016-0052-4
[60] C. A. Ihayere & J. A. Okhuoya, “Phytochemical analysis of cultivated medicinal mushroom- Ganoderma Sp.”, Nigerian Journal of Biotechnology 35 (2022) 11. https://doi.org/10.4314/njbot.v35i1.2. DOI: https://doi.org/10.4314/njbot.v35i1.2
[61] B. O. Ekute & L. M. Nwokocha, “Nutritive value of the sclerotia of Pleurotus tuberregium: a mushroom”, Science World Journal 16 (2021) 256. https://www.ajol.info/index.php/swj/article/view/221739.
[62] O. C. Ogidi & V. O. Oyetayo, “Phytochemical property and assessment of antidermatophytic activity of some selected wild macrofungi against pathogenic dermatophytes”, Mycology 7 (2016) 9. https://doi.org/10.1080/21501203.2016.1145608. DOI: https://doi.org/10.1080/21501203.2016.1145608
[63] O. I. Ogidi, L. M. O. Oguoma, P. C. Adigwe & B. B. Anthony, “Phytochemical properties and in-vitro antimicrobial potency of wild edible mushrooms (Pleurotus ostreatus) obtained from Yenegoa, Nigeria”, Journal of Phytopharmacology 10 (2021) 180. https://doi.org/10.31254/phyto.2021.10306. DOI: https://doi.org/10.31254/phyto.2021.10306
[64] G. Albahri, A. Badran, A. Hijazi, A. Daou, E. Baydoun, M. Nasser & O. Merah, “The therapeutic wound healing bioactivities of various medicinal plants”, Life (Basel) 13 (2023) 1. https://doi.org/10.3390/life13020317. DOI: https://doi.org/10.3390/life13020317
[65] S. M. G. Pires, R. S. Reis, S. M. Cardoso, R. Pezzani, E. Paredes-Osses, A. Seilkhan, A. Ydyrys, M. Martorell, E. S. Gurer, W. N. Setzer, A. F. A. Razis, B. Modu, D. Calira & J. Sharifi-Rad, “Phytates as a natural source for health promotion: a critical evaluation of clinical trials”, Frontiers in Chemistry 11 (2023) 1174109. https://doi.org/10.3389/fchem.2023:1174109. DOI: https://doi.org/10.3389/fchem.2023.1174109
[66] M. Lopez-Moreno, M. Garces-Pimon & M. Miguel, “Antinutrients: lectins, goitrogens, phytates and oxalates, friends or foe?”, Journal of Functional Foods 89 (2022) 104938. https://doi.org/10.1016/j.ff.2022.104938. DOI: https://doi.org/10.1016/j.jff.2022.104938
[67] KRCN, “Should I be avoiding oxalates?”, Retrieved from https://www.chhs.colostate.edu/krcn. Accessed February 8, 2024.
[68] M. Bello, M. O. Oluwamukomi & V. N. Enujiugha, “Influence of drying on the antinutritional contents and antioxidant capacities of oyster mushrooms (Pleurotus sajur-caju)”, Journal of Applied Tropical Agriculture 24 (2019) 49. https://journals.futa.edu.ng/home/paperd/1002/62111.
[69] N. Morsy, “Cardiac glycosides in medicinal plants”, InTech, 2017. https://doi.org/10.5772/65963. DOI: https://doi.org/10.5772/65963
[70] P. Dash, B. Kar, M. Ghocchi, G. Ghosh, V. K. Rai, C. Das, D. Pradhan, T. K. Rajwar, J. Halder, D. Dubey, S. Manoharadas & G. Rath, “Antimicrobial properties of the edible pink oyster mushroom, Pleurotus eaus: in-vivo and in-vitro studies”, Microbial pathogenesis 196 (2024) 106915. https://doi.org/10.1016/micpath.2024.106915. DOI: https://doi.org/10.1016/j.micpath.2024.106915
[71] C. Liu, S. Zhao, C. Zhu, Q. Gao, J. Bai, J. Si & Y. Chen, “Ergosterol ameliorates renal inflammatory responses in mice model of diabetic nephropathy”, Biomedicine & Pharmacotherapy 128 (2020) 110252. https://doi.org/10.1016/j.biopha.2020.110252. DOI: https://doi.org/10.1016/j.biopha.2020.110252
[72] M. Shashikant, A. Bains, P. Chaula, M. Sharma, R. Kaushik, S. Kandi & R. C. Kuhad, “In-vitro antimicrobial and anti-inflammatory activity of modified solvent evaporated ethanolic extract of Calocybe indica: GCMS and HPLC characterization”, International Journal of Food Microbiology 376 (2022) 109741. https://doi.org/10.1016/j.ijfoofmicro.2022.109741. DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109741
[73] M. Zangeneh, M. M. Derakhshankhan, B. Haghshenas, Z. Foroozanfar & Z. Izadi, “In-vitro evaluation of antioxidant, probiotic, and antiproliferative activity of Ganoderma lucidum-extracted polysaccharides for the prevention of complication associated with gastrointestinal inflammatory diseases”, Heliyon 11 (2025) e42936. https://doi.org/10.1016/j.heliyon.2025.e42936. DOI: https://doi.org/10.1016/j.heliyon.2025.e42936
[74] J. O. Odiase-Omoighe & B. O. Agoreyo, “Identification of bioactive compounds in sclerotia extracts from Pleurotus tuber-regium (Fr.) Sing. using gas chromatograph-mass spectrometer (GC-MS)”, Nigerian Journal of Biotechnology 1 (2022) 39. https://doi.org/10.4314/njb.v38i.4s. DOI: https://doi.org/10.4314/njb.v38i1.4S
[75] A. Pauldasan, I. T. Arockiyaehil & V. G. Anand, “Phytochemical screening and GC-MS studies of Cyperus compressus Rottb”, Journal of Medicinal Plants Studies 8 (2020) 90. https://www.plantsjournal.com/archives/?year=2020&vol=8&issue=6&part=B&ArticleId=1231.
[76] H. I. Hameed, J. A. Huda & J. M. Ghaidaa, “Evaluation of antifungal and antibacterial activity and analysis of bioactive phytochemical compounds of Cinnamomum Zeylanicum (Cinnamon bark) using gas chromatography-mass spectrometry”, Oriental Journal of Chemistry 32 (2016) 1769. http://dx.doi.org/10.13005/ojc/320406. DOI: https://doi.org/10.13005/ojc/320406
[77] A. Vanitha, V. Chinnadurai & K. Kalimuthu, “A comparative study of phytochemical constituents of Benkara malabarica (Lam.) leaf and leaf callus extracts”, International Journal of Pharma Research and Health Sciences 6 (2018) 2401. https://doi.org/10.21276/ijprhs.2018.2018.02.11.
[78] A. Dutta, T. Panchali, A. Khatun, S. R. Jarapala, K. Das, K. Ghosh, S. Chakrabarti & S. Pradhan, “Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line”, Scientific Reports 13 (2023) 14125. https://doi.org/10.1038/s41598-023-34885-3. DOI: https://doi.org/10.1038/s41598-023-34885-3
[79] N. L. Weir, L. Johnson, W. Guan, B. Steffen, L. DJousse, K. J. Mukamal & M. Y. Tsai, “Cis-vaccenic acid is associated with lower HOMA-IR and incident T2D in participants from the MESA cohort”, Diabetes 67 (2018) 1552-P Supplement 1. https://doi.org/10.2337/DB18-1552-P. DOI: https://doi.org/10.2337/db18-1552-P
[80] P. Semwal, S. Painuli, H. Badoni & R. K. Bacheti, “Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichopjora A. Camus from Uttarakhand Himalaya”, Clinical Phytoscience 4 (2018) 1. https://doi.org/10.1186/s40816-018-0090-y. DOI: https://doi.org/10.1186/s40816-018-0090-y
[81] K. Krishnamoorthy & P. Subramaniam, “Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS”, International Scholarly Research Notices 567409 (2014) 1. https://doi.org/10.1155/2014/567409. DOI: https://doi.org/10.1155/2014/567409
[82] P. Rangsinth, R. Sharika, N. Pttarachotanant, C. Duangjan, C. Wongwan, C. Sillapachaiyaporn, S. Nilket, N. Wongsirojkul, A. Prasansuklab, T. Tencomnao, G. P.-H. Leung & S. Chuchawankul, “Potential beneficial effects and pharmacological properties of ergosterol, a common bioactive compound in edible mushrooms”, Foods 12 (2023) 1. https://doi.org/10.3390/foods12132529. DOI: https://doi.org/10.3390/foods12132529
[83] C.-M. Ku & J.-Y. Lin, “Farnesol, a sesquiterpene alcohol in herbal plants, exerts anti-inflammatory and antiallergic effects on ovalbumin-sensitized and -challenged asthmatic mice”, Evidence Based Complementary Alternative Medicine (2015) 1. https://doi.org/10.1155/2015/387357. DOI: https://doi.org/10.1155/2015/387357
[84] M. Sardana, K. S. Muhlfenzi, S. T. M. Wenker, C. Akesson, M. A. Hayes, C. S. Elmore & S. Pithani, “Exploring the enzyme-catalyzed synthesis of isotope labeled cyclopropanes”, Journal of Labelled Compounds and Radiopharmacy 65 (2022) 86. https://doi.org/10.1002/jlcr.3962. DOI: https://doi.org/10.1002/jlcr.3962
[85] S. J. Chawner, M. J. Cases-Thomas & J. A. Bull, “Divergent synthesis of cyclopropane-containing lead-like compounds, fragments and building blocks through a cobalt catalyzed cyclopropanation of phenylvinyl sulfide”, European Journal of Organic Chemistry 34 (2017) 5015. https://doi.org/10.1002/ejoc.201701030. DOI: https://doi.org/10.1002/ejoc.201701030
[86] J. E. Holesh, S. Aslam & A. Martin, “Physiology, carbohydrates”, in StatPearls. StatPearls Publishing, 2023. PMID: 29083823.
[87] BNF, “Fat”. (2024). https://www.nutrition.org.uk/nutritional-information/fat/. Accessed 27th October, 2024.
[88] BHF, “Protein: what you need to know”. (2020). https://bhf.org.uk/informationsupport/heart-matters-magazine/nutrition/protein. Accessed 1st November, 2024.
[89] M. Obodai, D. L. N. Mensah, A. Fernandes, N. K. Kortei, M. Dzomeku, M. Teegarden, S. J. Schwartz, L. Barros, J. Prempeh, R. K. Takli & I. C. F. R. Ferreira, “Chemical characterization and antioxidant potential of wild Ganoderma species from Ghana”, Molecules 22 (2017) 196. https://doi.org/10.3390/molecules22020196. DOI: https://doi.org/10.3390/molecules22020196
[90] C. Sun-Edelstein & A. Mauskop, “Role of magnesium in the pathogenesis and treatment of migraine”, Expert Review of Neurotherapeutics 9 (2009) 369. https://doi.org/10.1586/14737175.9.3.369. DOI: https://doi.org/10.1586/14737175.9.3.369

Published
How to Cite
Issue
Section
Copyright (c) 2025 Bethel Onyeka Ekute, Muluh Emmanuel Khan, Aloysius Akaangee Pam, Jude Ehwevwerhere Emurotu (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.