Combating the Multicollinearity in Bell Regression Model: Simulation and Application

https://doi.org/10.46481/jnsps.2022.713

Authors

  • G. A. Shewa Department of Mathematical Sciences, Taraba State University, Jalingo/Taraba, Nigeria
  • F. I. Ugwuowo Department of Statistics, University of Nigeria, Nsukka/Enugu, Nigeria

Keywords:

Bell regression, Liu, Multicollinearity, Poisson regression, Ridge

Abstract

Poisson regression model has been popularly used to model count data. However, over-dispersion is a threat to the performance of the Poisson regression model. The Bell Regression Model (BRM) is an alternative means of modelling count data with over-dispersion. Conventionally, the parameters in BRM is popularly estimated using the Method of Maximum Likelihood (MML). Multicollinearity posed challenge on the efficiency of MML. In this study, we developed a new estimator to overcome the problem of multicollinearity. The theoretical, simulation and application results were in favor of this new method.

Dimensions

F. Castellares, S. L. P. Ferrari & A. J. Lemonte, “On the Bell Distribution and its Associated Regression Model for Count Data”, Applied Mathematical Modelling 56 (2017) 172, https://doi.org/10.1016/j.apm.2017.12.014 DOI: https://doi.org/10.1016/j.apm.2017.12.014

M. Amin, M. N. Akram, & A. Majid, “On the Estimation of Bell Regression Model Using Ridge Estimator”, Communications in Statistics - Simulation and Computation 2021 (2021),

https://doi.org/10.1080/03610918.2020.1870694 DOI: https://doi.org/10.1080/03610918.2020.1870694

A. Majid, M. Amin, & M. N. Akram, “On the Liu Estimation of Bell Regression Model in the Presence of Multicollinearity”, Journal of Statistical Computation and Simulation 2021 (2021) 21.

https://doi.org/10.1080/00949655.2021.1955886 DOI: https://doi.org/10.1080/00949655.2021.1955886

E. T. Bell, “Exponential Numbers”, The American Mathematical Monthly 41 (1934a) 419. DOI: https://doi.org/10.1080/00029890.1934.11987615

E. T. Bell, “Exponential Polynomials”, Annals of Mathematics 35 (1934b) 258. DOI: https://doi.org/10.2307/1968431

N. T. Longford, “A Fast Scoring Algorithm for Maximum Likelihood Estimation in Unbalanced Mixed Models with Nested Random Effects”, Biometrika, 74 (1987) 817. DOI: https://doi.org/10.1093/biomet/74.4.817

B. M. G. Kibria, “Performance of Some New Ridge Regression Estimators”, Communications in Statistics-Simulation and Computation 32 (2003) 419. DOI: https://doi.org/10.1081/SAC-120017499

A. F. Lukman, B. Aladeitan, K. Ayinde & M. R. Abonazel, “Modified Ridge – Type for the Poisson Regression Model: Simulation and Application”, Journal of Applied Statistics 2021 (2021a),

https://doi.org/10.1080/02664763.2021.1889998 DOI: https://doi.org/10.1080/02664763.2021.1889998

A. F. Lukman, E. Adewuyi, K. Månsson & B. M. G. Kibria, “A New Estimator for the Multicollinear Poisson Regression Model: Simulation and Application, Scientific Reports 11 (2021b) 3732.

https://doi.org/10.1038/s41598-021-82582-w. DOI: https://doi.org/10.1038/s41598-021-82582-w

A. E. Hoerl & R. W. Kennard “Ridge Regression: Biased Estimation for Nonorthogonal Problems”, Technometrics, 12 (1970) 55. DOI: https://doi.org/10.1080/00401706.1970.10488634

K. Liu, “A New Class of Biased Estimate in Linear Regression”, Commun Stat. 22 (1993) 393. DOI: https://doi.org/10.1080/03610929308831027

A. F. Lukman, K. Ayinde, S. Binuomote & A. C. Onate, “Modified Ridge - Type Estimator to Combat Multicollinearity: Application to Chemical Data”, Journal of Chemometrics 2019 (2019) e3125. https://doi.org/10.1002/cem.3125 DOI: https://doi.org/10.1002/cem.3125

R. Farebrother, “Further Results on the Mean Square Error of Ridge Regression”, Journal of the Royal Statistical Society, Series B (Methodological) 38 (1976) 248. DOI: https://doi.org/10.1111/j.2517-6161.1976.tb01588.x

G. Trenkler & H. Toutenburg, “Mean Squared Error Matrix Comparisons between Biased Estimators an Overview of Recent Results”, Statistical Papers 31 (1990) 179. DOI: https://doi.org/10.1007/BF02924687

M. R. Ozkale & S. Kaciranlar, The Restricted and Unrestricted Two-Parameter Estimators” Commun. Statist. Theory, Meth. 36 (2007) 2707. DOI: https://doi.org/10.1080/03610920701386877

Stan Development Team, RStan: The R Interface to Stan. R package Version 2.19.3 (2020), https://mc-stan.org

M. Arashi, M. Roozbeh, N. A. Hamzah, & M. Gasparini, “Ridge Regression and its Applications in Genetic Studies” PloS One 16 (2021a) 4, e0245376. DOI: https://doi.org/10.1371/journal.pone.0245376

M. Arashi, M. Norouzirad, M. Roozbeh, & N. M. Khan, “A High-Dimensional Counterpart for the Ridge Estimator in Multicollinear Situations”, Mathematics 9 (2021b) 3057, https://doi.org/10.3390/math9233057 DOI: https://doi.org/10.3390/math9233057

Y. M. Bulut, “Performance of the Liu-type Estimator in the Bell Regression Mode”, 9th International Conference on Applied Analysis and Mathematical Modeling (ICAAMM21), Istanbul/TURKEY (2021).

O. G. Obadina, A. F. Adedotuun & O. A. Odusanya, “Ridge Estimation’s

Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations”, Journal of the Nigerian Society of Physical Sciences 3 (2021) 278. DOI: https://doi.org/10.46481/jnsps.2021.304

M. Qasim, K. Månsson, P. Sjolander & B. M. G. Kibria, ”A New Class of Efficient and Debiased Two – Step Shrinkage Estimators: Method and Application”, Journal of Applied Statistics 2021 (2021), https://doi.org/10.1080/02664763.2021.1973389 DOI: https://doi.org/10.1080/02664763.2021.1973389

A. K. M. E. Saleh, M. Arashi, & B. M. G. Kibria, Theory of Ridge Regression Estimation with Applications , John Wiley, USA (2019).

M. Suhail, S. Chand & B. M. G. Kibria, “Quantile-Based Robust Ridge M-Estimator for Linear Regression Model in Presence of Multicollinearity and Outliers”, Communications in Statistics Simulation and Computation 50 (2021) 3194. DOI: https://doi.org/10.1080/03610918.2019.1621339

N. K. Rashad & Z. Y. Algamal, “A New Ridge Estimator for the Poisson Regression Model”, Iranian Journal of Science and Technology, Transactions A: Science, 43 (2019), https://doi.org/10.1007/s40995-019-00769-3 DOI: https://doi.org/10.1007/s40995-019-00769-3

Z. Y. Algamal & Y. Asar, “Liu-Type Estimator for the Gamma Regression Model”, Communications in Statistics-Simulation and Computation 8 (2018) 2035. DOI: https://doi.org/10.1080/03610918.2018.1510525

B. M. G. Kibria & A. F. Lukman, “A New Ridge – Type Estimator for the Linear Regression Model: Simulations and Applications”, Scientific 2020 (2020) 9758378, https://doi.org/10.1155/2020/9758378 DOI: https://doi.org/10.1155/2020/9758378

R. H. Myers, D. C. Montgomery, G. G. Vining & T. J. Robinson, Generalized Linear Models: With Applications in Engineering and the Sciences, Wiley, New York (2012) 791.

Published

2022-08-15

How to Cite

Shewa, G. A., & Ugwuowo, F. I. (2022). Combating the Multicollinearity in Bell Regression Model: Simulation and Application. Journal of the Nigerian Society of Physical Sciences, 4(3), 713. https://doi.org/10.46481/jnsps.2022.713

Issue

Section

Original Research