Application of hourglass matrix in Goldreich-Goldwasser-Halevi encryption scheme


  • Olayiwola Babarinsa Department of Mathematics, Federal University Lokoja, Kogi State, Nigeria
  • Olalekan Ihinkalu Department of Computer Sciences, Federal University Lokoja, Kogi State, Nigeria
  • Veronica Cyril-Okeme Department of Mathematics, Federal University Lokoja, Kogi State, Nigeria
  • Hailiza Kamarulhaili School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
  • Arif Mandangan Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
  • Azfi Zaidi Mohammad Sofi Faculty of Bioengineering & Technology, Universiti Malaysia Kelantan, 16100 Kota Bharu, Malaysia
  • Akeem B. Disu Department of Mathematics, National Open University of Nigeria, Abuja, Nigeria


Goldreich-Goldwasser-Halevi encryption scheme, Hourglass matrix, Quadrant interlocking factorization.


Goldreich-Goldwasser-Halevi (GGH) encryption scheme is lattice-based cryptography with its security based on the shortest vector problem (SVP) and closest vector problem (CVP) with immunity to almost all attacks, including Shor's quantum algorithm and Nguyen's attack of higher lattice dimension. To improve the efficiency and security of the GGH Scheme by reducing the size of the public basis to be transmitted, we use an hourglass matrix obtained from quadrant interlocking factorization as a public key. The technique of quadrant interlocking factorization to yield a nonsingular hourglass matrix compensates the encryption scheme with better efficiency and security.


B. Schneier, Applied cryptography: protocols, algorithms, and source code in C, John Wiley and Sons, 2007.

C. Meshram, ”An efficient id-based cryptographic encryption based on discrete logarithm problem and integer factorization problem”, Information Processing Letters 115 (2015) 351a358. doi: DOI:

K. S. McCurley, ”The discrete logarithm problem”, Proceedings of Symposia in Applied Math 42 (1990) 49. DOI:

S. F. Tzeng & M. S. Hwang, ”Digital signature with message recovery and its variants based on elliptic curve discrete logarithm problem”, Computer Standards & Interfaces 26 (2004) 61. doi: DOI:

P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, Ieee, 1994, pp. 124a134. doi: DOI:

P. E. Black, D. R. Kuhn & C. J. Williams, ”Quantum Computing and Communication”, 56 (2002) 189. doi: DOI:

K. Balasubramanian & M. Rajakani, Problems in cryptography and cryptanalysis Research Anthology on Blockchain Technology in Business, Healthcare, Education, and Government, IGI Global, 2021, pp. 837a853. doi: DOI:

A. Ekert & R. Jozsa, ”Quantum computation and shorasˆ factoring algorithm”, Reviews of Modern Physics 68 (1996) 733. doi: DOI:

M. Bunder, A. Nitaj, W. Susilo & J. Tonien, A new attack on three variants of the rsa cryptosystem in: Australasian Conference on Information Security and Privacy, Springer, 2016, pp. 258a268.ˆ doi: DOI:

A. Mandangan, H. Kamarulhaili & M. Asbullah, ”On the smallest-basis problem underlying the GGH lattice-based cryptosystem”, Malaysian Journal of Mathematical Sciences 13 (2019) 1.

O. Goldreich, S. Goldwasser & S. Halevi, Public-key cryptosystems from lattice reduction problems, Annual International Cryptology Conference, Springer, 1996, pp. 112-131. DOI:

D. Micciancio & O. Regev, Lattice-based cryptography, Post-quantum cryptography, Springer, 2009, pp. 147a191.ˆ doi: DOI:

P. Nguyen, Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from crypto’97, Annual International Cryptology Conference, Springer, 1999, pp. 288a304. DOI:

D. Micciancio, Improving lattice based cryptosystems using the hermite normal form, International Cryptography and Lattices Conference, Springer, 2001, pp. 126. doi: DOI:

S. Osikoya & E. Adeyefa, ”Jensen-based new cryptographic scheme”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 49. doi: DOI:

S. Ludwig, W. Kalfa, File system encryption with integrated user management, ACM SIGOPS Operating Systems Review 35 (2001) 88. doi: DOI:

M. A. Asbullah & M. R. K. Ariffin, ”Design of rabin-like cryptosystem without decryption failure”, Malaysian Journal of Mathematical Sciences 10 (2016) 1.

O. Babarinsa & H. Kamarulhaili, Quadrant interlocking factorization of hourglass matrix, AIP Conference Proceedings of the 25th National Symposium on Mathematical Sciences, Vol. 1974, AIP Publishing, 2018. pp. 030009:1a9. doi:

O. Babarinsa, M. Arif, H. Kamarulhaili, ”Potential applications of hourglass matrix and its quadrant interlocking factorization”, ASM Science Journal 12 (2019) 72. DOI:

O. Babarinsa, H. Kamarulhaili, Mixed energy of a mixed hourglass graph, Communications in Mathematics and Applications 10 (2019) 45. doi:

O. Babarinsa & H. Kamarulhaili, Mixed hourglass graph, AIP Conference Proceedings, Vol. 2184, AIP Publishing LLC, 2019, pp. 020003. doi: DOI:

J. Hoffstein, J. Pipher, J. H. Silverman, J. H. Silverman, An introduction to mathematical cryptography, Vol. 1, Springer, 2008.

A. Nitaj, M. R. K. Ariffin, D. I. Nassr & H. M. Bahig, New attacks on the rsa cryptosystem, International Conference on Cryptology in Africa, Springer, 2014, pp. 178a198. doi:https://10.1007/978-3-319-06734-612. DOI:

O. Babarinsa, ”Graph theory: A lost component for development in Nigeria”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 844. doi: DOI:




How to Cite

Babarinsa, O., Ihinkalu, O., Cyril-Okeme, V., Kamarulhaili, H. ., Mandangan, A., Sofi, A. Z. M. ., & Disu, A. B. (2022). Application of hourglass matrix in Goldreich-Goldwasser-Halevi encryption scheme. Journal of the Nigerian Society of Physical Sciences, 4(4), 874.



Original Research