Potential of Anacardic Acid for Nanosized Cellulose Preparation Under Different Treatment Conditions

Authors

  • Olugbenga O. Oluwasina Department of Chemistry, Federal University of Technology Akure, P.M.B. 704 Akure, Ondo State, Nigeria
  • Abiodun D. Aderibigbe Department of Chemistry, Federal University of Technology Akure
  • Damilola C. Petinrin Department of Chemistry, Federal University of Technology Akure, P.M.B. 704 Akure, Ondo State, Nigeria
  • Adeyemi S. Adebisi Department of Chemistry, Federal University of Technology Akure, P.M.B. 704 Akure, Ondo State, Nigeria
  • Olayinka O. Oluwasina School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, 4000, 7 South Africa
  • Oluwasegun J. Wahab Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

Keywords:

Anacardic acid, Cellulose, Nanosized cellulose, Ultrasonication, Reflux, Microwave irradiation

Abstract

Herein, anacardic acid was applied for the preparation of nanosized cellulose using three different 11 treatment conditions including ultrasonication, microwave irradiation, and reflux. Physico-chemical 12 characterization was undertaken using FTIR, TEM, SEM, and XRD. FTIR, TEM, and SEM analyses 13 confirm the preparation of nanosized cellulose with similar chemical but different physical properties as 14 the cellulose starting material. In addition, calculated degrees of crystallinities from XRD data revealed 15 crystallinities of 53.9, 54.4, and 54.7 % for the nanosized cellulose prepared by ultrasonication (UNC), 16 microwave irradiation (MNC), and reflux (RNC) respectively, which all are higher than the 53.3 % of the 17 precursor cellulose. Overall, the study shows that anacardic acid holds potential for the preparation of 18 nanosized cellulose.

Dimensions

A. D. Aderibigbe, R. A. Crane, M. R. Lees, & A. J. Clark, “Selective uptake of Ag (I) from aqueous solutions using ionic liquid-modified iron oxide nanoparticles”, Journal of Nanoparticle Research, 216 (2020) 1–14. https://doi.org/https://doi.org/10.1007/s11051-020-04944-1.

X. Fu, H. Ji, B. Wang, W. Zhu, Z. Pang, & C. Dong, “Preparation of thermally stable and surface-functionalized cellulose nanocrystals by a fully recyclable organic acid and ionic liquid mediated technique under mild conditions”, Cellulose, 27 (2020) 1289–1299. https://doi.org/10.1007/s10570-019-02875-2.

A. M. Olszewska, E. Kontturi, J. Laine, & M. Österberg, “All-cellulose multilayers: Long nanofibrils assembled with short nanocrystals”, Cellulose, 20 (2013) 1777–1789. https://doi.org/10.1007/s10570-013-9949-8.

M. Khadraoui, R. Khiari, L. Bergaoui, & E. Mauret, “Production of lignin-containing cellulose nanofibrils by the combination of different mechanical processes”, Industrial Crops and Products, 183 (2022) 114991. https://doi.org/10.1016/j.indcrop.2022.114991.

L. Chen, J. Y. Zhu, C. Baez, P. Kitin, & T. Elder, “Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids”, Green Chemistry, 18 (2016) 3835–3843. https://doi.org/10.1039/c6gc00687f.

Q. Q. Wang, J. Y. Zhu, R. Gleisner, T. A. Kuster, U. Baxa, & S. E. McNeil, “Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation”, Cellulose, 19 (2012) 1631–1643. https://doi.org/10.1007/s10570-012-9745-x.

I. C. Hoeger, S. S. Nair, A. J. Ragauskas, Y. Deng, O. J. Rojas, & J. Y. Zhu, “Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification”, Cellulose, 20 (2013) 807–818. https://doi.org/10.1007/s10570-013-9867-9.

S. Yang, L. Peng, E. Liu, L. He, Q. Guan, J. Zhang, & L. Peng, “Development of a general kinetic model for organic acid-catalyzed hydrolysis of corn stalk”, Cellulose, 28 (2021) 6935–6952. https://doi.org/10.1007/s10570-021-03977-6.

A. Deng, J. Ren, W. Wang, H. Li, Q. Lin, Y. Yan, R. Sun, & G. Liu, “Production of xylo-sugars from corncob by oxalic acid-assisted ball milling and microwave-induced hydrothermal treatments”, Industrial Crops and Products, 79 (2016) 137–145. https://doi.org/10.1016/j.indcrop.2015.11.032.

T. vom Stein, P. M. Grande, H. Kayser, F. Sibilla, W. Leitner, & P. Domínguez de María, “From biomass to feedstock: One-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system”, Green Chemistry, 13 (2011) 1772–1777. https://doi.org/10.1039/c1gc00002k.

E. Robles, N. Izaguirre, B. I. Dogaru, C. M. Popescu, I. Barandiaran, & J. Labidi, “Sonochemical production of nanoscaled crystalline cellulose using organic acids”, Green Chemistry, 22 (2020) 4627–4639. https://doi.org/10.1039/d0gc01283a.

H. Holilah, H. Bahruji, R. Ediati, A. Asranudin, A. A. Jalil, B. Piluharto, R. E. Nugraha, & D. Prasetyoko, “Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid”, International Journal of Biological Macromolecules, 204 (2022) 593–605. https://doi.org/10.1016/j.ijbiomac.2022.02.045.

R. Paramashivappa, P. Phani Kumar, P. J. Vithayathil, & A. Srinivasa Rao, “Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) Nut shell liquid”, Journal of Agricultural and Food Chemistry, 49 (2001) 2548–2551. https://doi.org/10.1021/jf001222j.

T. Teixeira Bezerra, M. Oliveira de Almeida, N. Maria de Amorim Lima, N. Lúcia de Castro Rodrigues, V. Gomes Pereira Ribeiro, M. Jania Teixeira, L. Carbone, G. Mele, D. Lomonaco, & S. Elaine Mazzetto, “In vitro antileishmanial activity of sustainable anacardic acid and cardol based silver nanoparticles on L. braziliensis”, International Journal of Pharmaceutics, 619 (2022) 121698. https://doi.org/10.1016/j.ijpharm.2022.121698.

L. T. Vien, N. T. Nga, P. T. K. Hue, T. H. B. Kha, N. H. Hoang, P. T. Hue, P. N. Thien, C. Y. F. Huang, P. van Kiem, & D. T. Thao, “A New Liposomal Formulation of Hydrogenated Anacardic Acid to Improve Activities Against Cancer Stem Cells”, Natural Product Communications, 17 (2022) 1–8. https://doi.org/10.1177/1934578X221105696.

Y. H. Gao, Y. Zhang, Y. X. Guo, J. Q. Wang, M. Y. Gao, Z. H. Zhao, R. Gao, Y. N. Sun, L. bin Wang, & X. Li, “Treatment with anacardic acid modulates dendritic cell activation and alleviates the disease development of autoimmune neuroinflammation in mice”, Biochemical and Biophysical Research Communications, 613 (2022) 34–40. https://doi.org/10.1016/j.bbrc.2022.04.115.

R. Preethi, J. A. Moses, & C. Anandharamakrishnan, “Development of anacardic acid incorporated biopolymeric film for active packaging applications”, Food Packaging and Shelf Life, 28 (2021) 100656. https://doi.org/10.1016/j.fpsl.2021.100656.

L. Nambela, L. v. Haule, & Q. A. Mgani, “Anacardic acid isolated from cashew nut shells liquid: A potential precursor for the synthesis of anthraquinone dyes”, Cleaner Chemical Engineering, 3 (2022) 100056. https://doi.org/10.1016/j.clce.2022.100056.

O. Olugbenga, L. Labunmi, & O. Bodunde, “Microcrystalline cellulose from plant wastes through sodium hydroxide-anthraquinone-ethanol pulping”, BioResources, 9 (2014) 6166–6192.

S. v. Shobha & B. Ravindranath, “Supercritical Carbon Dioxide and Solvent Extraction of the Phenolic Lipids of Cashew Nut”, Journal of Agricultural and Food Chemistry, 39 (1991) 2214–2217. https://doi.org/https://doi.org/10.1021/jf00012a022.

W. P. Flauzino Neto, H. A. Silvério, N. O. Dantas, & D. Pasquini, “Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls”, Industrial Crops and Products, 42 (2013) 480–488. https://doi.org/10.1016/j.indcrop.2012.06.041.

A. Mandal & D. Chakrabarty, “Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization”, Carbohydrate Polymers, 86 (2011) 1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030.

A. F. Afolabi, S. S. Oluyamo, & I. A. Fuwape, “Synthetic characterization of cellulose from moringa oleifera seeds and potential application in water purification”, Journal of the Nigerian Society of Physical Sciences, 3 (2021) 140–143. https://doi.org/10.46481/jnsps.2021.206.

A. F. Afolabi, S. S. Oluyamo, & I. A. Fuwape, “Synthetic characterization and structural properties of nanocellulose from moringa oleifera seeds”, Journal of the Nigerian Society of Physical Sciences, 3 (2021) 148–153. https://doi.org/10.46481/jnsps.2021.202.

N. O. Paul, E. Agboeze, E. C. Ezeh, O. P. Nsude, E. C. Ezeh, O. C. Ike, O. C. Omuluche, K. J. Orie, & O. Ogbobe, “Isolation and Characterization of Cellulose from Pentaclethra macrophylla Benth Pod Biomass Wastes for Polymer Reinforcement Composite”, J. Chem. Soc. Nigeria, 47 (2022) 611–622. https://doi.org/10.46602/jcsn.v47i3.765.

W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, & Y. Hai, “Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments”, Carbohydrate Polymers, 83 (2011) 1804–1811. https://doi.org/10.1016/j.carbpol.2010.10.040.

E. de M. Teixeira, T. J. Bondancia, K. B. R. Teodoro, A. C. Corrêa, J. M. Marconcini, & L. H. C. Mattoso, “Sugarcane bagasse whiskers: Extraction and characterizations”, Industrial Crops and Products, 33 (2011) 63–66. https://doi.org/10.1016/j.indcrop.2010.08.009.

Olugbemiga et al

Published

2022-11-05

How to Cite

Potential of Anacardic Acid for Nanosized Cellulose Preparation Under Different Treatment Conditions. (2022). Journal of the Nigerian Society of Physical Sciences, 4(4), 949. https://doi.org/10.46481/jnsps.2022.949

Issue

Section

Original Research

How to Cite

Potential of Anacardic Acid for Nanosized Cellulose Preparation Under Different Treatment Conditions. (2022). Journal of the Nigerian Society of Physical Sciences, 4(4), 949. https://doi.org/10.46481/jnsps.2022.949