Effect of benzophenone on the physicochemical properties of N-CNTs synthesized from 1-ferrocenylmethyl (2-methylimidazole) catalyst

Authors

  • Ayomide Labulo Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • Elijah Temitope Adesuji Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • Charles Ojiefoh Oseghale Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • Elias Emeka Elemike Department of Chemistry, Federal University of Petroleum, Nigeria
  • Adamu Usman
  • Akinola Kehinde Akinola Department of Chemistry Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Enock Olugbenga Dare Department of Chemistry Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

Keywords:

Chemical vapour deposition, nitrogen-doped carbon nanotubes, 1-ferrocenylmethyl(2-methylimidazole), X-ray photoelectron spectroscopy

Abstract

Vertically-aligned nitrogen-doped carbon nanotubes (v-N-CNTs) were synthesized \textit{via} the chemical vapour deposition (CVD) technique. 1-ferrocenylmethyl(2-methylimidazole) was employed as the source of the Fe catalyst and was dissolved in different ratios of acetonitrile/benzophenone feedstock which served as both the carbon, nitrogen, and oxygen sources. The morphological difference in N-CNTs was as a result of increased oxygen concentration in the reaction mix and not due to water vapour formation as observed in the oxygen-free experiment, indicating specifically, the impact of oxygen. Raman and X-ray photoelectron spectroscopy (XPS) revealed surface defects and grafting of oxygen functional groups on the sidewall of N-CNTs. The FTIR data showed little or no effect as oxygen concentration increases. XPS analysis detected the type of nitrogen species (\textit{i.e.} pyridinic, pyrrolic, graphitic, or molecular nitrogen forms) incorporated in the N-CNT samples. Pyrrolic nitrogen was dominant and increased (from 8.6 to 11.8 at.\%) as oxygen concentration increases in the reaction precursor. An increase in N content was observed with the introduction of a lower concentration of oxygen, followed by a gradual decrease at higher oxygen concentration. Our result suggested that effective control of the reactant mixtures can manipulate the morphology of N-CNTs.

Dimensions

J. Zhang, X.B Yi, S. Liu, H.L Fan, W. Ju, Q.C & W. J. Ma, “Vertically aligned carbon nanotubes/carbon fibre paper composite to support Pt nanoparticles for the direct methanol fuel cell application”, J Phys Chem Solids 102 (2017) 99.

W. Li, C. Liang , J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun & Q. Xin, “Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell”, Carbon 40 (2002) 787.

Z. Bo, D. Hu, J. Kong, J. Yan & K. Cen, “Performance of vertically oriented graphene supported platinum-ruthenium bimetallic catalyst for methanol oxidation”, J Power Sources 273 (2015) 530.

S. Hong, J. Lee, K. Do, M. Lee, J.H Kim, S. Lee & D.H Kim, “Stretch-able electronics: Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices”, Adv Funct Mater 27 (2017) 1770285.

E. Titus, M.K Singh, G. Cabral, V. Paserin, P.R. Babu, W.J. Blau, J. Ventura, J.P. Araujo & J. Gracio, “Fabrication of vertically aligned carbon nanotubes for spintronic device applications”, J Mater Chem 19 (2009) 7216.

B-J. Lee & G-H, “Jeong Efficient surface functionalization of vertically-aligned carbon nanotube arrays using an atmospheric pressure plasma jet system”, Fuller Nanotub Car N 26 (2018) 116.

T. Tsai, C. Lee, N. Tai & Tuan W, “Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices”, Appl Phys Lett 5 (2009) 013107.

S. Ahadian, U. Naito, V.J. Surya, S. Darvishi, M. Estili, X. Liang, K. Naka- jima, H. Shiku, Y. Kawazoe & T. Matsue, “Fabrication of poly (ethylene glycol) hydrogels containing vertically and horizontally aligned graphene using dielectrophoresis: An experimental and modelling study”, Carbon 123 (2017) 460.

N. Zhao, Z. Ma, H. Song, Y. Xie & M. Zhang Enhancement of bio- electricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibres anode in a microbial fuel cell. Electrochim Acta. 296 (2018) 69.

W. Yang, Thordarson P, J.J Gooding, S.P Ringer & F. Braet, “Carbon nan- otubes for biological and biomedical applications”, Nanotechnol 18 (2007) 412001.

H. Chen, A. Roy, J-B. Baek, L. Zhu, J. Qu & L. Dai, “Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications”, Mater Sci Eng: R: Rep 70 (2010) 63.

S.N Kim, J.F. Rusling & F. Papadimitrakopoulos, “Carbon nanotubes for electronic and electrochemical detection of biomolecules”, Adv Mater 19 (2007) 3214.

L.K. Putri, B.J Ng, W-J. Ong, H.W Lee, W.S Chang & S.P Chai, “Heteroatom nitrogen-and boron-doping as a facile strategy to improve photo-catalytic activity of standalone reduced graphene oxide in hydrogen evolution”, ACS Appl Mater Interface 9 (2017) 4558.

W. Han, Y. Bando, K. Kurashima & T. Sato, “Boron-doped carbon nanotubes prepared through a substitution reaction”, Chem Phys Lett 299 (1999) 368.

V. Perazzolo, E. Gradzka, C. Durante, R. Pilot, N. Vicentini, G.A. Rizzi, G. Granozzi & A. Gennaro, “Chemical and electrochemical stability of nitrogen and sulphur doped mesoporous carbons”, Electrochim Acta 197 (2016) 251.

J.P. Paraknowitsch & A. Thomas, “Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications”, Energy Env Sci 6 (2013) 2839.

M.I. Ionescu, Y. Zhang, R. Li, H. Abou-Rachid & X. Sun, “Nitrogen-doping effects on the growth, structure and electrical performance of carbon nanotubes obtained by spray pyrolysis method”, Appl Surf Sci 258 (2012)

M. Scardamaglia, M. Amati, B. Llorente, P. Mudimela, J.F. Colomer, J. Ghijsen, C. Ewels, R. Snyders, L. Gregoratti & C. Bittencourt, “Nitro- gen ion casting on vertically aligned carbon nanotubes: tip and sidewall chemical modification”. Carbon 77 (2014) 319.

J.F. Colomer, B. Ruelle, N. Moreau, S. Lucas, R. Snyders, T. Godfroid, C. Navio & C. Bittencourt, “Vertically aligned carbon nanotubes: synthesis and atomic oxygen functionalization”, Surf Coatings Technol 205 (2011) S

A. Lopez-Bezanilla, “Electronic and quantum transport properties of sub-stitutionally doped double-walled carbon nanotubes”, J Phys Chem C 118 (2014) 1472.

E.N Nxumalo & N.J. Coville,“Nitrogen-doped carbon nanotubes from organometallic compounds: A review”, Mater 3 (2010) 2141.

S. Van Dommele, A. Romero-Izquirdo, R. Brydson, K. De Jong & J. Bitter,“Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes” Carbon 46 (2008) 138.

C. Tang, Y. Bando, D. Golberg & F. Xu, “Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethyl- formamide”, Carbon 42 (2004) 2625.

T. Sugai, H. Yoshida, T. Shimada, T. Okazaki, H. Shinohara & S. Bandow, “New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge”, Nano Lett 3 (2003) 769.

S. Dixit, S. Singhal, V. Vankar & A. Shukla, “Size-dependent Raman and absorption studies of single-walled carbon nanotubes synthesized by pulse laser deposition at room temperature”, Optical Mater 72 (2017) 612.

B. McLean, C.A. Eveleens, I. Mitchell, G.B. Webber & A.J. Page, “Catalytic CVD synthesis of boron nitride and carbon nanomaterials–synergies between experiment and theory”, Phys Chem Chem Phys 19 (2017) 26466.

S.L. Pirard, S. Douven & J.P. Pirard, “Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapour deposition process”, Front Chem Sci Eng 11 (2017) 280.

M. Bansal, C. Lal, R. Srivastava, M. Kamalasanan & L. Tanwar, “Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method”, Phys B: Condens Matter 405 (2010) 1745.

G.D Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R Oliver, T. Zimrin, A.J Hart, D. Aurbach & C.V Thompson, “Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapour through preheating of added oxygen”, Carbon 50 (2012) 4002.

G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons & H. Dai, “Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and

oxygen”, P Natl Aca Sci USA 102 (2005) 16141.

T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima & K. Hata, “Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts”, Nano Lett 8 (2008) 4288.

K. Hasegawa & S. Noda, “Millimeter-tall single-walled carbon nanotubes are rapidly grown with and without water”, ACS Nano 5 (2011) 975-.

Q. Wen, W. Qian, F. Wei, Y. Liu, G. Ning & Q. Zhang, “CO2-assisted SWNT growth on porous catalysts”, Chem Mater 19 (2007) 1226.

L.M.Ombaka, P.G. Ndungu & V.O. Nyamori, “Tuning the nitrogen content and surface properties of nitrogen-doped carbon nanotubes synthesized using a nitrogen-containing ferrocenyl derivative and ethyl benzoate”, J Mater Sci 50 (2015) 1187.

M.H. Rümmeli, F. Schäffel, C. Kramberger, T. Gemming, A. Bachmatiuk, R.J Kalenczuk, B. Rellinghaus, B. Büchner & T. Pichler, “Oxide-driven carbon nanotube growth in supported catalyst CVD”, J Am Chem Soc

(2007) 15772.

J.B. In, C.P. Grigoropoulos, A.A. Chernov & A. Noy, “Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions”, ACS Nano 5 (2011) 9602.

S. Sakurai, M. Yamada, K. Hata & D.N. Futaba, “Limitation in growth temperature for water-assisted single-wall carbon nanotube forest synthesis”, MRS Adv 3 (2018) 91.

D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura & S. Iijima, “84% catalyst activity of water-assisted growth of single-walled carbon nanotube forest characterization by a statistical and

macroscopic approach”, J Phys Chem B 110 (2006) 8035.

G.D. Nessim, A.J. Hart, J.S. Kim, D. Acquaviva, J. Oh, C.D. Morgan, M. Seita, J.S. Leib & C.V. Thompson, “Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment”,

Nano Lett 8 (2008) 3587.

P.B. Amama, C.L. Pint, L. McJilton, S.M. Kim, E.A. Stach, P.T. Murray, R.H. Hauge & B. Maruyama, “Role of water in the super growth of single-walled carbon nanotube carpets”, Nano Lett 9 (2008) 44.

W. Shi, J. Li, E.S. Polsen, C.R. Oliver, Y. Zhao, E.R. Meshot, M. Barclay, D.H. Fairbrother, A.J. Hart & D.L. Plata, “Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically

aligned carbon nanotubes”, Nanoscale 9 (2017) 5222.

H.P. Boehm, “Surface oxides on carbon and their analysis: A critical assessment”, Carbon 40 (2002) 145.

B. Petrova, B. Tsyntsarski, T. Budinova, N. Petrov, L.F. Velasco & C.O Ania, “Activated carbon from coal tar pitch and furfural for the removal of p-nitrophenol and m-aminophenol”, Chem Eng J 172 (2011) 102.

P. He, Y. Du, S. Wang, C. Cao, X. Wang, G. Pang & Y. Shi, “Synthesis, Structure, and Reactivity of Ferrocenyl-NHC Palladium Complexes”, Z Anorg Allg Chem 639 (2013) 1004.

A.H. Labulo, N.P. Ngidi, B. Omondi, V.O. Nyamori, “Physicochemical properties of nitrogen-doped carbon nanotubes from metallocenes and ferrocenyl imidazolium compounds”, J Organomet Chem 868 (2018) 66.

R.S. Oosthuizen & V.O. Nyamori, “Heteroatom-containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials”, Appl Organomet Chem 26 (2012) 536.

Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho & G. Wu, “Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocat-

alysts”, Small 11 (2015) 1443.

X. Zhao, F. Li, R. Wang, J.M. Seo, H.J. Choi, S.M. Jung, J. Mahmood, I.Y. Jeon & J.B Baek, “Controlled fabrication of hierarchically structured nitrogen-doped carbon nanotubes as a highly active bifunctional oxygen electrocatalyst”, Adv Funct Mater 27 (2017) 1605717.

R. Zhang, Y. Zhang & F. Wei, “Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications”, Chem Soc Rev 46 (2017) 3661.

B.G. Sumpter, J. Huang, V. Meunier, J.M. Romo-Herrera, E. Cruz-Silva, H. Terrones & M. Terrones, “A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants”, Int J Quantum Chem 109 (2009) 97.

H. Okuyama, N. Iwata & H. Yamamoto, “Growth of vertically aligned carbon nanotubes depending on the thickness of catalyst films by plasma-enhanced chemical vapour deposition”, Mol Cryst Liq Cryst 472 (2007)

Ç. Öncel & Y. Yürüm, “Carbon nanotube synthesis via the catalytic CVD method: A review of the effect of reaction parameters”, Fuller Nanotub Car N 14 (2006) 17.

S.I. Yengejeh, S.A. Kazemi & A. Öchsner, “Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review”, Compos Part B: Eng 86 (2016) 95.

L. Zhou, L.R. Enakonda, M. Harb, Y. Saih, A. Aguilar-Tapia, S. Ould-Chikh, J.L. Hazemann, J. Li, N. Wei, D. Gary & P. Del-Gallo, “Fe catalysts for methane decomposition to produce hydrogen and carbon nanomaterials”, Appl Catal B: Env 208 (2017) 44.

E. Teblum, Y. Gofer, C.L. Pint & G.D. Nessim, “Role of catalyst oxidation state in the growth of vertically aligned carbon nanotubes”, J Phys Chem C 116 (2012) 24522.

J. Wang, M.J. Shea, J.T. Flach, T.J. McDonough, A.J. Way, M.T. Zanni & M.S. Arnold, “Role of defects as exciton quenching sites in carbon nanotube photovoltaics”, J Phys Chem C 121 (2017) 8310.

W. Xia, “Interactions between metal species and nitrogen-functionalized carbon nanotubes”, Catal SciTechnol 6 (2016) 630.

S,L. Rebelo, A. Guedes, M.E. Szefczyk, A.M. Pereira, J.P. Araújo & Freire C, “Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unravelling disorder in graphitic materials”,

Phys Chem Chem Phys 18 (2016) 12784.

M.A. Pimenta, E. del Corro, B.R. Carvalho, C. Fantini & L.M. Malard, “Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides”, Acc Chem Res 48 (2014) 41.

X. Zhang, W.P. Han, X.F. Qiao, Q.H. Tan, Y.F. Wang, J. Zhang & P.H. Tan, “Raman characterization of AB-and ABC-stacked few-layer graphene by interlayer shear modes”, Carbon 99 (2016) 118.

X.Y. Yang, J.J. Xu, Z.W. Chang, D. Bao, Y.B. Yin, T. Liu, J.M. Yan, D.P. Liu, Y. Zhang & X.B Zhang, “Blood-capillary-inspired, free-standing, flexible, and low-cost super-hydrophobic N-CNTs@ SS cathodes for high-

capacity, high-rate, and stable Li-ion batteries”, Adv Energy Mater 8 (2018) 1702242.

S. Nie, W. Wu, Y. Pan, X. Dong, B. Li & D.Y. Wang, “Studies on intumescent flame retardant polypropylene composites based on biodegradable wheat straw”, Fire Mater. 42 (2018) 703.

R. Rao, M. Yang, Q. Ling, C. Li, Q. Zhang, H. Yang & A. Zhang, “A novel route of enhancing oxidative catalytic activity: Hydroxylation of MWCNTs induced by sectional defects”, Catal Sci Technol 4 (2014) 665.

A. Ameli, M. Arjmand, P. Pötschke, B. Krause & U. Sundararaj, “Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites.

Carbon 106 (2016) 260.

H. Liu, H. Hu, J. Wang, P. Niehoff, X. He, E. Paillard, D. Eder, M. Winter & J. Li, “Hierarchical ternary MoO2/MoS2/heteroatom-doped carbon hybrid materials for hig-performance lithium-ion storage”, Chem ElectroChem 3 (2016) 922.

H.R. Barzegar, E. Gracia-Espino, T. Sharifi, F. Nitze & T. Wågberg, “Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: impact on electronic properties and growth selectivity”, J Phys Chem C 117 (2013) 25805.

B. Pal, S.S. Mallick & B. Pal, “Anisotropic CuO nanostructures of different size and shape exhibit thermal conductivity superior to typical bulk powder. Colloids Surf A: Physicochem Eng Asp 459 (2014) 282.

X. Peng, J. Jia, X. Gong, Z. Luan & B. Fan, “Aqueous stability of oxidized carbon nanotubes and the precipitation by salts”, J Hazard Mater 165 (2009) 1239.

N. Iqbal, X. Wang, J. Yu, N. Jabeen, H. Ullah & B. Ding, “In situ synthesis of carbon nanotube doped metal-organic frameworks for CO2 capture”, RSC Adv 6 (2016) 4382.

Z. Huang, Z. Liao, W. Yang, H. Zhou, C. Fu, Y. Gong, L. Chen & Y. Kuang, “Different types of nitrogen species in nitrogen-doped carbon material: The formation mechanism and catalytic role on oxygen reduction reaction”, Electrochim Acta. 245 (2017) 957.

Z-H. Sheng, L. Shao, J-J. Chen, W-J. Bao, F-B. Wang & X-H. Xia, “Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis”, ACS Nano 5 (2011) 4350.

G. Bepete, ZN. Tetana, S. Lindner, M.H. Rümmeli, Z. Chiguvare & N.J. Coville, “The use of aliphatic alcohol chain length to control the nitrogen type and content in nitrogen-doped carbon nanotubes”, Carbon 52 (2013).316.

T.E. Bell, G. Zhan, K. Wu, H.C. Zeng & L. Torrente-Murciano, “Modification of ammonia decomposition activity of ruthenium nanoparticles by N-doping of CNT supports”, Topics Catal 60 (2017) 1251.

J. Yu, Y. Zhong, W. Zhou & Z. Shao, “Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel-cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution”, J Power Sources 338 (2017)

T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin & N. Brown, “High-resolution XPS characterization of chemical functionalised MWC-NTs and SWCNTs”, Carbon 43 (2005) 153.

R. Ionescu, E.H. Espinosa, E. Sotter, E. Llobet, X. Vilanova, X. Correig, A. Felten, C. Bittencourt, G. Van Lier, J.C. Charlier & J.J. Pireaux, “Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers”, Sens Actuators B: Chem 113 (2006) 36.

A. Sharma, K. Dasgupta, S. Banerjee, A. Patwardhan, D. Srivastava & J.B. Joshi, “In-situ nitrogen doping in carbon nanotubes using a fluidized bed reactor and hydrogen storage behaviour of the doped nanotubes”, Int J Hydrogen Energy 42 (2017) 10047.

Z. Li, R. Liu, Y. Xu & X. Ma, “Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid-treated N-doped CNTs”, Appl Surf Sci 347 (2015) 643.

T.Fu, R. Liu, J. Lv & Z. Li, “Influence of acid treatment on N-doped multi-walled carbon nanotube supports for Fischer-Tropsch performance on cobalt catalyst”, Fuel Process Technol 122 (2014) 49.

Published

2020-11-15

How to Cite

Effect of benzophenone on the physicochemical properties of N-CNTs synthesized from 1-ferrocenylmethyl (2-methylimidazole) catalyst. (2020). Journal of the Nigerian Society of Physical Sciences, 2(4), 205-217. https://doi.org/10.46481/jnsps.2020.105

Issue

Section

Original Research

How to Cite

Effect of benzophenone on the physicochemical properties of N-CNTs synthesized from 1-ferrocenylmethyl (2-methylimidazole) catalyst. (2020). Journal of the Nigerian Society of Physical Sciences, 2(4), 205-217. https://doi.org/10.46481/jnsps.2020.105