Advance effect of magnetic field on the rheological properties of manganese zinc ferrite ferrofluid

Authors

  • A. A. Ibiyemi Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • O. Akinrinola Department of Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • G. T. Yusuf Department of Science Laboratory Technology, Osun State Polytechnic, Iree, Nigeria
  • S. Olaniyan Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • J. Lawal Department of Science Laboratory Technology, Federal Polytechnic, Ede, Nigeria
  • M. Orojo Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • B. Osuporu Department of Physics, Federal University, Oye-Ekiti, Nigeria

Keywords:

Complex viscosity, Magnetization, Coercivity, Modulus

Abstract

The rheological characteristics of manganese zinc (Mn-Zn) ferrite magnetic nanofluid synthesized using co-precipitation technique were examined in the absence and presence of magnetic fields. The research formulates required conditions needed for the formation of a gelly-like structure. The impact of magnetic field and temperature on the rheological properties of Mn-Zn ferrite ferrofluid is investigated. When a magnetic field was applied, higher magnetoviscoelasticity and magnetoviscosity were formed. Analysis was also done on other rheological parameters, such as the damping factor, which is crucial for regulating and restricting vibrations in a system. A stiff, gel-like structure is produced when a magnetic field is applied, and the gel-like quality grows as the magnetic field increases; when the magnetic field is removed, the gel-like and rigidity of the structure is lost. At low temperatures, the liquid phase is dominated by solid-like particles, whereas at high temperatures, the liquid-like structure is dominant. This study reveals the conditions required for the creation of high viscous effect and the viscoelastic behavior induced by the field offers important insights for optimizing the Mn-Zn ferrite ferrofluid for a range of applications. Other criterial for gel-like structure formation such as low torque and deflection angle of the ferrofluid were also established.   

Dimensions

S. Sharma, A. Dadheech, A. Parmar, J. Arora, Q. Al-Mdallal & S. Saranya, “MHD micro polar fluid flow over a Stretching Surface with melting and slip effect”, Scientific Reports 13 (2023) 10715. https://doi.org/10.1038/s41598-023-36988-3.

S. Saranya & Q. M. Al-Mdallal, “Non-Newtonian ferrofluid flow over an unsteady contracting cylinder under the influence of aligned magnetic field”, Case Studies in Thermal Engineering 21 (2020) 100679. https://doi.org/10.1016/j.csite.2020.100679.

A. A. Ibiyemi, “Characteristics of temperature-dependent shear flow in an ultrasonicated ferrofluid”, Recent Advances in Natural Sciences, 1 (2023) 28. https://doi.org/10.61298/rans.2023.1.2.28.

K. Sharma, I. L. Animasaun & Q. M. Al-Mdallal, “Scrutinization of ferrohydrodynamic through pores on the surface of disk experiencing rotation: Effects of FHD interaction, thermal Radiation, and internal

heat source”, Arabian Journal for Science and Engineering, in-press. https://doi.org/10.1007/s13369-023-07853-2.

S. Saranya, Q. M. Al-Mdallal & S. Javed, “Shifted Legendre collocation method for the solution of unsteady viscous-ohmic dissipative hybrid ferrofluid flow over a cylinder”, Nanomaterials 11 (2021) 1512. https://doi.org/10.3390/nano11061512.

N. Jahan, S. Pathak, K. Jain & R. P. Pant, “Enhancement in viscoelastic properties of flake- shaped iron based magnetorheological fluid using fer rofluid”, Colloids Surface. A Physico chem. Eng. Aspects. 529 (2017) 88. https://doi.org/10.1016/j.colsurfa.2017.05.057.

V. Kumar, A. Rana, M. S. Yadav & R. P Pant, “Size-induced effect on nano-crystalline CoFe2O4”, Journal of magnetism and magnetic material 320 (2008) 1729. https://doi.org/10.1016/j.jmmm.2008.01.021.

G. Paul, P. K. Das & I. Manna, “Synthesis, characterization and stud ies on magneto-viscous properties of magnetite dispersed water based nanofluids”, Journal of Magnetism and Magnetic Material 404 (2017) 29. http://doi.org/10.1016/J.JMMM.2015.11.085.

T. Liu, X. Gong, Y. Xu & S. Xuan, “Magneto-induced stress enhancing effect in a colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium”, Soft Matter 10 (2015) 813. https://doi.org/10.1039/c3sm52865k.

K. Shahrivar, A. L. Ortiz & J. de Vicente, “A comparative study of the tribological performance of ferrofluids and magnetorheological fluids within steel–steel point contacts”, Tribology International 78 (2017) 125. https://doi.org/10.1016/j.triboint.2014.05.008.

A. A. Ibiyemi, G. T. Yusuf & A. Olusola, “Influence of temperature and magnetic field on rheological behavior of ultra-sonicated and oleic acid coated cobalt ferrite ferrofluid”, Physica scripta 96 (2021) 125842. https://iopscience.iop.org/article/10.1088/1402-4896/ac2ecb/meta.

A. Mishra, S. Pathak, P. Kumar, A. Singh, K. Jain, R. Chaturvedi, D. Singh, G. A. Basheed & R. P. Pant, “Measurement of static and dynamic magneto-viscoelasticity in facile varying pH synthesized CoFe2O4-based magnetic fluid”, IEEE Transactions on Magnetics 55 (2021) 4601107. https://ieeexplore.ieee.org/abstract/document/8903510.

M. Chand, A. Shankar, N. Jahan, K. Jain & R. P. Pant, “Improved properties of bidispersed magnetorheological fluids”, Royal Society of Chem istry Advance 4 (2021) 53960. https://doi.org/10.1039/C4RA07431A.

M. Hosseini, L. Vafajoo, E. Ghasemi & B. H. Salman, “Experimental investigation the effect of nanoparticle concentrationon the rheological behavior of paraffin-based nickel ferrofluid”, International Journal of Heat Mass Transfer 93 (2016) 228. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.082.

N. Jahan, K. Jain, S. Pathak & R. P. Pant, “Dipolar interaction and magneto-viscoelasticity in nanomagnetic fluid”, Journal of Nanoscience & Nanotechnology 18 (2021) 2746. https://doi.org/10.1166/jnn.2018.14532.

K. Jain, S. Pathak, & R. P. Pant. (2016), “Enhanced magnetic properties in ordered oriented ferro fibres”, RSC Advances 6 (2016) 70943. https://doi.org/10.1039/C6RA12650B.

N. jahan, G. A. Basheed, K. Jain, S. Pathak, & R. P. Pant, “Dipolar interaction and magneto- viscoelasticity in nanomagnetic fluid”, Journal of Nanoscience and Nanotechnology 17 (2021) 1. https://doi.org/10.1166/jnn.2018.14532.

G. Paul, P. K. Das & I. Manna, “Synthesis, characterization and stud ies on magneto-viscous properties of magnetite dispersed water based nanofluids”, Journal of Magnetism and Magnetic Material 404 (2021) 29. https://doi.org/10.1016/j.jmmm.2015.11.085.

J. A. Ruiz-lopez, J. C. Frenandez-Toledano, R. Hidalgo-Alvarez & J. de Vicente, “Testing the mean magnetization approximation, dimensionless, and scaling numbers in magnetorheology”, Soft matterial

(2016) 1468. https://pubs.rsc.org/en/content/articlelanding/2015/sm/c5sm02267c/unauth.

B. K. Kumbhar, S. R. Patil & S. M. Sawan, “Synthesis and characterization of magnetorheological (MR) fluids for MR brake application En gineering Science and Technology”, an International Journal 18 (2021) 432. https://doi.org/10.1016/J.JESTCH.2015.03.002.

V. Sepela´k, I. Bergmann, A. Feldho ˇ ff, P. Heitjans, Frank Krumeich, Dirk Menzel, Fred J. Litterst, Stewart J. Campbell & Klaus D. Becker, “Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior”, The Journal of Physical Chemistry, 111 (2007) 5026. https://pubs.acs.org/doi/abs/10.1021/jp067620s.

E. Abba, Z. Shehu, D. Wilson Lamayi, K. P. Yoriyoa , R. K. Dogarab & N. C. Ayuk, “Novel developments of ZnO/S iO2 nanocomposite: a nanotechnological approach towards insect vector control”, Jour nal of the Nigerian Society of Physical Sciences 3 (2021) 262. https://doi.org/10.46481/jnsps.2021.198.

K. M. Omatola, A. D. Onojah, A. N. Amah & I. Ahemen, “Synthesis and characterization of silica xerogel and aerogel from rice husk ash and pulverized beach sand via sol-gel route”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1609. https://www.journal.nsps.org.ng/index.php/jnsps/article/view/1609.

A. Chattopadhyay, S. Samanta, R. Srivastava, R. Mondal & P. Dhar, “Elemental substitution tuned magneto-elastoviscous behavior of nanoscale ferrite MFe2O4 (M = Mn, Fe, Co, Ni) based complex fluids”, Journal of Magnetism and Magnetic Materials 491 (2021) 1. https://doi.org/10.1016/j.jmmm.2019.165622.

J. M. Linke & S. Odenbach, “Anisotropy of the magneto viscous effect in a ferrofluid with weakly interacting magnetite nanoparticles”, Journal of Physics Condensed Matter 27 (2015) 176001. https://doi.org/10.1088/0953-8984/27/17/176001.

D. Y. Borin, V. V. Korolev, A. G. Ramazanova, S. Odenbach, O. V. Bal masova, V. I. Yashkova & D. V. Korolev, “Magneto viscous effect in ferrofluids with different dispersion media”, Journal of Magnetism and Magnetic Material 416 (2016) 110. https://doi.org/10.1016/J.JMMM.2016.05.024.

D. Borin, R. Mu¨ller & S. Odenbach, “Magnetoviscosity of a magnetic fluid based on Barium hexaferrite nanoplates”, Materials 14 (2021) 1870.https://doi.org/10.3390/ma14081870.

R. Y. Hong, Z. Ren, Y. Han, H. Li, Y. Zheng & J. Ding, “Rheological properties of water- based Fe3O4 ferrofluids”, Chem. Eng. Sci., 62 (2007) 5912. https://doi.org/10.1016/j.ces.2007.06.010.

L. J. Felicia & J. Philip, “Probing of field-induced structures and their dynamics in ferrofluids using oscillatory rheology”, Langmuir 30 (2014) 12171. https://doi.org/10.1021/la502878v.

X. K. Chen, X. Y. Hu, P. Jia, Z. X. Xie & J. Liu, “ Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling”, Int. J. Mech. Sci. 206 (2021) 106576. https://doi.org/10.1016/j.ijmecsci.2021.106576.

X. K. Chen & K. Q. Chen, “Thermal transport of carbon nanomaterials”, Journal of Physics: Condensed Matter 32 (2020) 153002. https://doi.org/10.1088/1361-648X/ab5e57.

P. Ilg, M. Kro¨ger & S. Hess, “Magnetoviscosity of semi-dilute ferrofluids and the role of dipolar interactions: Comparison of molecular simulations and dynamical mean-field theory”, Phys. Rev. E. 71 (2005) 031205. https://doi.org/10.1103/PhysRevE.71.031205.

R. Weeber, M. Klinkigt, S. Kantorovich & C. Holm, “Microstructure and magnetic properties of magnetic fluids consisting of shifted dipole particles under the influence of an external magnetic field”, Journal of Chemistry and Physics 139 (2013) 214901. https://doi.org/10.1063/1.4832239.

V. S. I. Balaji, V. Y. Victor & C. B. Anna, “Dynamic behavior of dual cross-linked nanoparticle networks under oscillatory shear”, New Journal of Physics 16 (2014) 075009. https://iopscience.iop.org/article/10.1088/1367-2630/16/7/075009/meta.

Y. Yongbo, L. Lin, C. Guang & L. Weihua, “Magnetorheological properties of aqueous ferrofluid”, Journal of the society of rheology 24 (2005) 25. https://doi.org/10.1678/rheology.34.25.

T. Mitsumaka & T. Okazaki, “Magnetization-induced reduction in dy namic modulus of polyurethane elastomers loaded with ferrite”, Japanese Journal of Applied Physics 46 (2007) 4220. https://doi.org/10.1143/JJAP.46.4220

Y. Li, P. Han, D. Li, S. Chen & Y. Wangli, “Typical dampers and energy harvesters based on characteristics of ferrofluids”, Friction 11 (2023) 165. https://link.springer.com/article/10.1007/s40544-022-0616-7.

P. Shima, P. John & R. Baldev, “Magnetically controllable nanofluid with tunable thermal conductivity and viscosity”, Applied Physics Letter 95 (2009) 133112. https://pubs.aip.org/aip/apl/article-abstract/95/13/133112/961285/Magnetically-controllable-nanofluid-with-tunable?redirectedFrom=fulltext.

J. J. Vadasz, G. Saneshan & V. Peter, “Heat transfer enhancement in nano fluids suspensions: possible mechanism and explanations”, International Journal of Heat Mass Transfer 48 (2005) 2673. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.023.

A. Afzal, I. Nawfal, I. M. Mahbubul & S. S. Kumbar, “An overview on the effect of ultrasonication duration on different properties of nanofluids”, Journal of Thermodynamic Analysis and Calorimetry 135 (2018) 393. https://doi.org/10.1007/s10973-018-7144-8.

K. M. Dillip, J. C. Philip & J. Philip, “Influence of size polydisersity on magnetic field tunable structures in magnetic nanofluids containing superparamagnetic nanoparticles”, Nanoscale advance 3 (2021) 3573. https://doi.org/10.1039/D1NA00131K.

M. D. Rao, P. S. Goyal, B. Panda & R. I. K. Moorthy, “Ferrofluids for Active Shock Absorbers”, Materials Science and Engineering 360 (2018) 012002. https://doi.org/10.1088/1757-899X/360/1/012002.

J. P. Segovia-Gutierrez, J. de Vicente, R. Hidalgo-Alvarez & A. M. Puertas, “Brownian dynamics simulations in magnetorheology & comparison with experiments”, Soft Matter 9 (2013) 6970. https://doi.org/10.1039/C3SM00137G.

A. Wiehe, C. Kieburg & J. Maas, “Temperature induced effects on the durability of MR fluids”, Journal of Phys: Conference Series 412 (2013) 012017.https://iopscience.iop.org/article/10.1088/1742-6596/412/1/012017/meta.

N. Wang, X. Liu, Grzegorz Kro´lczyk, Z. Li & W. Li, “Effect of temperature on the transmission characteristics of high-torque magnetorheological brakes”, Smart Mater. Struct. 28 (2019) 057002. https://doi.org/10.1088/1361-665X/ab134c.

C. Upadhyay, H.C. Verma & S. Anand, “Cation distribution in nanosized Ni–Zn ferrites”, Journal of Applied Physics 95 (2004) 5746. https://doi.org/10.1063/1.1699501.

J. A. Ruiz-Lo´pez, Z. W. Wang, R. Hidalgo-Alvarez & J. de Vicente, “Simulations of model magnetorheological fluids in squeeze flow mode” Journal of Rheology 61 (2017) 871. https://pubs.aip.org/sor/jor/article-abstract/61/5/871/608933/Simulations-of-model-magnetorheological-fluids-in.

A. A. Ibiyemi & G. T. Yusuf, “Rheological investigation of strain rate and magnetic field on the magnetorheology of Zinc ferrite ferrofluid”, Applied Physics A. 128 (2022) 591. https://doi.org/10.1007/s00339-022-05720-9.

Damping factor of manganese zinc ferrite ferrofluid at temperature.

Published

2024-03-06

How to Cite

Advance effect of magnetic field on the rheological properties of manganese zinc ferrite ferrofluid. (2024). Journal of the Nigerian Society of Physical Sciences, 6(2), 1897. https://doi.org/10.46481/jnsps.2024.1897

Issue

Section

Physics & Astronomy

How to Cite

Advance effect of magnetic field on the rheological properties of manganese zinc ferrite ferrofluid. (2024). Journal of the Nigerian Society of Physical Sciences, 6(2), 1897. https://doi.org/10.46481/jnsps.2024.1897