Investigating the magnetic domain structure and photonics characters of Singled Phased hard ferromagnetic Ferrite MFe3O4 (M= Co2+, Zn2+, Cd2+) Compounds


  • A. A. Ibiyemi Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • G. T. Yusuf Department of Science Laboratory Technology, Osun State Polytechnic, Iree, Nigeria
  • O. Akirinola Department of Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • M. Orojo Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • B. Osuporu Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • J. Lawal Department of Science Laboratory Technology, Federal Polytechnic, Ede, Nigeria


The impact of transition metals on ferrite (iron (III) oxide) compounds is investigated in this study. Ferrite samples were synthesized using the co-precipitation method. X-ray analysis unveiled the presence of the Fe-phase in the trivalent state, showcasing a single-phased cubic spinel framework with a preferred orientation along the (311) reflection plane. Crystallite sizes were determined for CdFe3O4, ZnFe3O4, and CoFe3O4 utilizing the Scherer equation, yielding values of 10.54 nm, 18.76 nm, and 32.63 nm, respectively. Zinc ferrite displayed an intermediate photonic nature compared to cobalt and cadmium ferrite, with cadmium ferrite showing high optical losses and cobalt ferrite exhibiting minimal optical losses. EDX analysis confirmed the presence of Zn2+, Co2+, Fe3+, Cd2+, and O2? ions in the correct ratios, supporting the intended stoichiometric composition. Optical assessment revealed that CoFe3O4 nanoparticles are well-suited for optoelectronic devices, ultraviolet detectors, and infrared (IR) detectors. VSM measurements of cobalt ferrite exhibited higher coercivity and magnetic saturation compared to other samples. Photoluminescence (PL) spectroscopy revealed multiple colors, including cyan, green, and yellow, at different wavelengths for the ferrite samples. These findings suggest that the synthesized samples are suitable materials for high-frequency devices owing to their robust magnetic properties. Cadmium ferrite displayed a multi-magnetic domain structure, contrasting with the single-magnetic domain structure observed in zinc and cobalt ferrite.


A. S. Lanje, R. S. Ningthoujam, S. J. Shrama, R. K. Vatsa & R. B. Pode, “Luminescence properties of Sn1? xFexO2 nanoparticles”, International Journal of Nanotechnology 7 (2010) 979.

Y. Jiang, S. Decker, C. Mohs & K. J. Klabunde, “Catalytic solid state reactions on the surface of nanoscale metal oxide particles”, Journal of Catalysis 180 (1998) 24.

S. Lee, S. U. S. Choi, S. Li & J. A Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles”, ASME Journal of Heat Transfer 121 (1999) 280-289.

K. B. Modi, P. V. Tanna, S. S Laghate & H. H Joshi, “The effect of Zn+2 substitutions on some structural properties of CuFeCrO4 system”, Journal of Material Science Letter 19 (2000) 1111.

O. Silva & P. C. Morais, “Investigation of anisotropy in cadmium ferrite based ionic magnetic fluid using magnetic resonance”, Journal of Magnetism and Magnetic Material 289 (2005) 136.

P. K Nayak, “Synthesis and characterization of cadmium ferrite”, Materials Chemistry and Physics 112 (2008) 24.

M. Yokoyama, E. Ohta, T. Sato & T. Sato, “Magnetic properties of ultrafine particles and bulk material of cadmium ferrite”, Journal of Magnetism and Magnetic Material 183 (1998) 173.

G. Albanese, A. Deriu, G. Calestani, F. Leccabue & B. E Wattas, “Formation of cadmium-containingW-type hexagonal ferrite”, Journal of Material Science 27 (1992) 6146.

D. Ravinder, S. S Rao & P. Shalini, “Room temperature electric properties of cadmium-substituted nickel ferrites”, Material Letter 57 (2003) 4040.

S. S Bellad, S. CWatawe, A.MShaikh & B. K Chougule, “Cadmium substituted high permeability lithium ferrite”, Bulleting of Material Science 232 (2000) 83.

M. ul-Islam, T. Abass & M. A Chaudhry, “Electrical properties of Cd substituted copper ferrite”, Material letters 53 (2000) 30.

B. Gillot, D. Thiebaut, M. Laarj & T. Thermochim, “Synthesis of stoichiometric cadmium substituted magnetites and formation by oxidation of solid solutions of cadmium ferrite and ?-iron oxide”, Thermochimica Acta 342 (1999) 167.

M. B Shelar, P. A Jadhav, S. S Chougule, M. M Mallapur & B. K Chougule, “Structural and electrical properties of nickel cadmium ferrites prepared through self-propagating auto combustion method”, Journal of Alloys and Compounds 476 (2009) 760.

B. Viswanathan & V. R. K. Murthy, Ferrite Materials: science and technology’, Narosa Publications (1990).

M. Srivastava, A. K Ojha, S. Chaubey & A. Materny, “Synthesis and optical characterization of nanocrystalline NiFe2O4 structures”, Journal of Alloy Compound 481 (2009) 515.

H. W. Cheng, J. Luo & C. J. Zhong, “SERS nanoprobes for bioapplication”, Frontier of Chemical Science and Engineering 9 (2015) 428.

K. C. Mouli, T. Joseph & K. Ramam, “Synthesis and magnetic studies of Co-Ni-Zn ferrite nano crystals”, Journal of Nanoscience and Nanotechnology 9 (2009) 5596.

M. Das & D. Chakraborty, “Influence of alkali treatment on the fine structure and morphology of bamboo fibers”, Journal of Applied Polymer Science102 (2006) 505.

D. De & B Adhikari, “Reclaiming of rubber by a renewable material (RRM)”, Journal of Applied Polymer Science 42 (2000) 1493.;2-U

R. Lebourgeois & C. Coillot, “Mn-Zn ferrites for magnetic sensor in space applications”, Journal of Applied Physics 103 (2008) 07E510.

A. K. Hossain, T. S. Biswas, T. Yanagida, H. Tanaka, H. Tabata & T. Kawai, “Enhancement of microstructure and initial permeability due to Cu substitution in Ni0.50?xCuxZn0.50Fe2O4 ferrites”, Material Chemistry and Physics 120 (2010) 461.

S. J Yaghmour, M. Hafez, K. Ali & W. Elshirbeeny, “The influence of zinc ferrites nanoparticles on the thermal, mechanical, and magnetic properties of rubber nanocomposites Polymer Composites”, 4 (2012) 1672 - 1677.

V. G. Harris, A. Geiler, Y. J. Chen, S. D. Yoon, M. Z. Wu, A. Yang, Z. H. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher & C. Vittoria, “Recent advances in processing and applications of microwave ferrites”, Journal of Magnetism and Magnetic Material 321 (2019) 2035.

J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann & S. N. Stitzer, “Ferrite devices and materials”, IEEE. Trans. Microwave Theory Technology 50 (2002) 721.

J. S. Bettinger, R. V. Chopdekar, M. Liberati, J. R. Neulinger, M. Zhshiev & Y. Akamwa, “Magnetism and transport of CuCr2Se4 thin film”, Journal of Magnetism and Magnetic Material, 318 (2007) 65. 1016/J.JMMM.2007.04.024

Y. Suzuki, R. B. Van Dover, E. M. Gyorgy, J. M. Philips, J. Korenivski, J. Werder, C. H Chen, R. J. Cava, R. J. W. F. jewski Peck & K. B. Do, “Structure and magnetic properties of epitaxial spinel ferrite thin film”, Applied Physics Letter 68 (1996) 714.

E. Pervaiz & I. H. Gul, “Influence of rare arth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite”, Journal of Physics: Conference series 439 (2013) 012015.

Y. Kitamoto, S. Kantake, A. Shirasaki, F. Abe & M. Naoe, “Low temperature fabrication of Co ferrite thin films with high coercivity for perpendicular recording disks by wet process”, Journal of Applied Physics 85 (1999) 4708.

W. F. J. Fontijn, P. J. vander Zaag, L. F. Feiner, R. Metselaar & M. C. A. Devillers, “A consistent interpretation of the magneto-optical spectra of spinel type ferrites”, Journal of Applied Physics. 85 (1999) 5100.

C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault & J. M. Greneche, “Magnetic properties of nanostructured ferrimagnetic zinc ferrite”, Journal of physics: Condensed Matter 12 (2020) 7795.

K. A. Manish, S. Anjna, K. M. Indresh, T. Alpana & K. Sunil, “Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities”, Journal of Taibah University for Science 13 (2019) 280.

S. Saleem, M. N Ashiq, S. Manzoor, U. Ali, R. Liaqat, A. Algahtani, S. Mujtaba, V. Tirth, A. M. Alsuhaibani, M. S. Refat, A. Ali, M. Aslam & A. Zaman, “Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application”, Journal of materials research and technology 25 (2023) 6150.

S. Arshad, A. Hussain, S. Noreen, N. Bibi, M. B. Tahir, J. Rehman, M. Jabeen, H. Benish Munawar & S. Rahman, “Structural, mechanical, electronic and optical properties of MFe2O4 (M=Zn, Cu, Si) ferrites for electrochemical, photocatalytic and optoelectronic applications”, Journal of Solid State Chemistry 330 (2024) 124504.

H. B. Desai & A. R. Tanna, “Effect of substitution on the electric and magnetic properties of ferrites: Ferrites and Multiferroics”, Engineering Materials Springer Singapore (2021) 49. 3

V. V. Jadhav, S. D. Shirsat, U. B. Tumberphale & R. S. Mane, “Spinel errite nanostructures for energy storage devices in micro and nanotechnologies”, Elsevier Netherland (2020) 35.

S. Thakur, N. Sharma, A. Varkia & J. Kumar, “Structural and optical properties of copper doped ZnO nanoparticles and thin films”, Advances in Applied Science Research 5 (2014) 18.

M. D. Tyona, S. B. Jambure, C. D. Lokhande, A. G. Banpurkar & R. U. Osuji, “Dye-sensitized solar cells based on Al-doped ZnO photoelectrodes sensitized with rhodamine”, Materials Letters 220 (2018) 281.

S. C. Suman, A. Kumar & P. Kumar, “Zn Doped ?-Fe2O3: An efficient material for UV driven photocatalysis and electrical conductivity”, Crystals 10 (2020) 273.

N. Kislov, S. Srinivasan, U. Emirov & E.K, “Stefanakos, “Optical absorption, red and blue shifts in ZnFe2O4 nanoparticles”, Materials Science

and Engineering B, 153 (2008) 70.

P. P. Hankare, R. P. Patil, A. V. Jadhav, R. S. Pandav, K. M. Garadkar, R. Sasikala & A. K. Tripathi, “Synthesis and characterization of nanocrystalline Ti- substituted Zn ferrite”, Journal of Alloys Compound 509 (2011) 2160.

P. Thakur, K. Gupta, P. Thakur, A. S. Kumar, V. Sudarsanan, P. Sharma & M. Lal, “Improvement in the structural, dielectric, and magnetic properties of CFO-doped KNNS-BKT ceramics”. Journal of Material Science: Mater Electron 34 (2023) 311.

B. H Devmunde, P. S Bhalerao & M. B Solunke, “Structural morphological and infrared properties of Cd2+ substitutes Nickel ferrite particles”, Journal of Physics: Conference Series 1644 (2020) 012021.

S. Sagadevan, Z. C. Zaira & F. Rahman, “Preparation and characterization of Nickel ferrite nanoparticles via co-precipitation method”, Material Research 21 (2018) 2016.

D. Ahmad, N. Mehboob, A. Zaman, N. Ahmed, M. Mushtaq, K. Althubeiti, A. Ali, F. Sulitana & K. Bashir, “Synthesis and characterization of Ce3+?doped Ni0.5Cd0.5Fe2O4 nanoparticles by Sol-gel: Autocombustion method”, Coatings 11 (2021) 1156.

D. Manojite, A. Mukherjee & S. T. Hari, “Characterization of cadmium substituted nickel ferrites prepared using auto-combustion technique”, Processing and Application of Ceramics 9 (2015) 193.

A. A Ibiyemi, G. T. Yusuf & A. Olusola, “Influence of temperature and magnetic field on rheological behavior of ultra-sonicated and oleic acid coated cobalt ferrite ferrofluid”, Physica scripta 96 (2021) 125842.

C. Mahesh, A. Shankar, N. Jahan, K. Jain & R. P. Pant, “Improved properties of bidispersed magnetorheological fluids”, Royal Society of Chemistry Advance 4 (2014) 53960.

A. A. Ibiyemi, “Characteristics of temperature-dependent shear flow in an ultrasonicated ferrofluid”, Recent Advances in Natural Sciences 1 (2023) 28.

A. A. Ibiyemi, M. A. Ilyas & J. Lawal, “Annealing effect on morphology, surface roughness and structure of thermally evaporated tin oxide thin films”, Recent Advances in Natural Sciences 1 (2023) 38.

S. Thakur, N. Sharma, A. Varkia & J. Kumar, “Structural and optical properties of copper doped ZnO nanoparticles and thin films”, Advances in Applied Science Research 5 (2014) 18. Structural and optical properties of copper doped ZnO nanoparticles and thin films

A. V. Dijken, E.A. Meulenkamp, D. V. Ilbergh & A. Meijerink, “Identification of the transition responsible for the visible emission in ZnO using quantum size effects”, Journal of Luminescence 90 (2000) 123.

S. Suwanboon, T. Ratana & W. T. Ratana, “Effect of Al and Mn Dopant on structural and optical properties of ZnO thin film prepared by Sol-gel route”, Journal of Science and Technology 4 (2007) 111.

M. B. Islam, M. R. Pavel, M. R. Islam & M. J. Haque, “Synthesis of Cobalt Ferrite Nanoparticles using microemulsion method: structure, morphology, and magnetic properties”, Journal of Engineering Science 13 (2022) 81.

X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang & F. S. Li, “Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition”, Nanoscale Research Letter 5 (2010) 1039.

A. A. Ibiyemi & G. T Yusuf, “Rheological investigation of strain rate and magnetic field on the magnetorheology of zinc ferrite ferrofluid”,

Applied Physics A 128 (2022) 591.

Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang & Y. He, “Magnetic and Mossbauer spectroscopy studies of zinc-substituted cobalt ferrites prepared by the sol-gel method”, Materials (Basel) 11 (2018) 1799.

Y. Li, R. Liu, Z. Zhang & C. Xiong, “Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M08O19 particles”, Materials Chemistry and Physics 64 (2013) 256.

A. Apostolov, I. Apostolova & J. Wesselinowa, “Specific absorption rate in Zn-doted ferrites for self-controlled magnetic hyperthermia”, The European Physical Journal B 92 (2019) 3.

P. Thakur, K. Kishore, M. Singh, S. Sharma, P. Sharma, P. Sharma & M. Lal, “Structural, morphological, and magnetic properties of CoFe2O4 nano-ferrites synthesized via co-precipitation route”, Materials Today: Proceedings 2023.

M. I. A. Abdel Maksoud, A. El-ghandour, G. S. El-Sayyad, A. S. Awed, A. H. Ashour, A. I. El-Batal, M. Gobara, E. K. Abdel-Khalek & M. M.

El-Okr, “Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties”, Journal of Sol-gel Science and Technology 90 (2019) 631.

C. H. Kim, Y. Myung, Y. J. Cho, H. S. Kim, S. –H. Park, J. Park, J. –Y. Kim & B. Kim, “Electronic structure of vertically aligned Mndoped

CoFe2O4 nanowires and their application as humidity sensors and photodetectors”, Journal of Physics and Chemistry C 113 (2009) 7085.

R. C. Kambale, P. A. Shaikh, N. S. Harale, V.A. Bilur, Y. D. Kolekar, C. H. Bhosale & K. Y. Rajpure, “Structural and magnetic properties of

Co1?xMnxFe2O4 spinel ferrites synthesized by combustion route”, Journal of Alloys Compound 490 (2010) 568.

O. Caltun, G. S. N. Rao, K. H. Rao, B. R Parvatheeswara, I. Dumitru, C. -O. Kim & C. Kim, “The influence of Mn doping level on magnetostriction coefficient of cobalt ferrite”, Journal of Magnetism and Magnetic Material 316 (2007) 618.

S. Dabagh, A. A. Ati, R. M. Rosnan, S. Zare & Z. Othaman, “Effect of Cu–Al substitution on the structural and magnetic properties of Co ferrites”, Material Science: Semiconductor Process 33 (2015) 1.

M. N. Ashiq, R. B. Qureshi, M. A. Malana & M. Ehsan, “Fabrication, structural, dielectric and magnetic properties of tantalum and potassium doped M-type strontium calcium hexaferrites”, Journal of Alloy Compound 651 (2015) 266.

A. A. Ibiyemi, G. T. Yusuf, O. Olubosede, A. Olusola & H. A. Akande, “Photoelectric and magnetic properties of chemically synthesized Cd–Ni Ferrite nanomagnetic particles”, Physica Scripta 97 (2022) 025804.

A. P. Rao, S. K. Rao, T. R. K. PydiRaju, G. Kapusetti, M. Choppadandi, M. C. Varma & K. H. Rao, “A systematic study of cobalt-zinc ferrite nanoparticles for self-regulated magnetic hyperthermia”, Journal of Alloys Compound 794 (2019) 60.



How to Cite

Investigating the magnetic domain structure and photonics characters of Singled Phased hard ferromagnetic Ferrite MFe3O4 (M= Co2+, Zn2+, Cd2+) Compounds. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1909.



Physics & Astronomy

How to Cite

Investigating the magnetic domain structure and photonics characters of Singled Phased hard ferromagnetic Ferrite MFe3O4 (M= Co2+, Zn2+, Cd2+) Compounds. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1909.