Spatio-temporal assessment of aerosol-induced atmospheric heating rates in Nigeria

Authors

  • Tertsea Igbawua Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria
  • Aondongu Alexander Tyovenda Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria
  • Terver Sombo Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria
  • Idugba Mathias Echi Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria

Keywords:

Single scattering albedo, Aerosol absorption, Radiative forcing, Transfer entropy

Abstract

Understanding the dynamics of atmospheric heating rates (AHR) is crucial for assessing the impact of aerosols on Earth's energy balance and consequently, on climate dynamics. This study investigates the spatial and temporal patterns of AHR across Nigeria from 2000 to 2022, using a radiative transfer model. Detrended Fluctuation Analysis (DFA) and Ordinary Least Squares Regression (OLR) were employed to assess the persistence of AHR over time. The Mann-Kendall test was applied to identify trends in AHR and other related variables, while causal relationships between AHR and influencing aerosol variables were examined using Transfer Entropy (TE) analysis. The national average AHR was 0.77±0.15 K/day, with an insignificant decreasing trend from 2000 to 2022. The AHR distribution correlated with aerosol optical depth (AOD) in all climate zones except BSh and BWh. In zones with persistent substantial and marginal decreases in AHR, sea salt (SS) and desert dust (DU) were the dominant variables, with the highest TE values of 0.155 and 0.179, respectively. Findings show that monthly aerosol absorption (Single Scattering Albedo (SSA) <0.89) was prevalent only in the Csb climate zone between November and February, while other zones remained dominated by aerosol scattering (SSA > 0.89). This suggests the essential role of scattering aerosols in limiting AHR, especially during the rainy season. The aerosol absorption by coarse-mode aerosols was more dominant in northern Nigeria compared to mixed-mode aerosol absorption. Seasonally, the mixed-aerosol mode dominated in southern Nigeria during the December-January-February (DJF), June-July-August (JJA), and September-October-November (SON) seasons. This study provides insights into the complex dynamics of AHR, with important consequences for climate and atmospheric processes across different regions and seasons.

Dimensions

[1] M. O. Andreae, “Climatic effects of changing atmospheric aerosol levels”, in World survey of climatology , A. Henderson-Sellers (Ed.), Elsevier B.V., Amsterdam, Netherlands, 1995, pp. 347–398. https://doi.org/10.1016/S0168-6321(06)80033-7.

[2] K. Peters, J. Quaas & N. Bellouin, “Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean”, Atmospheric Chemistry and Physics 11 (2011) 1393. https://doi.org/10.5194/acp-11-1393-2011.

[3] S. Liu, J. Xing, B. Zhao, J. Wang, S. Wang, X. Zhang & A. Ding, “Understanding of aerosol–climate interactions in China: aerosol impacts on solar radiation, temperature, cloud, and precipitation and its changes under future climate and emission scenarios”, Current Pollution Reports 5 (2019) 36. https://doi.org/10.1007/s40726-019-00107-6.

[4] X. Ling and X. Han, “Aerosol impacts on meteorological elements and surface energy budget over an urban cluster region in the Yangtze River Delta”, Aerosol and Air Quality Research 5 (2019) 1040. https://doi.org/10.4209/aaqr.2017.12.0602.

[5] S. P. Cochrane, K. S. Schmidt, H. Chen, P. Pilewskie, S. Kittelman, J. Redemann, S. LeBlanc, K. Pistone, M. Segal Rozenhaimer, M. Kacenelenbogen, Y. Shinozuka, C. Flynn, R. Ferrare, S. Burton, C. Hostetler, M. Mallet & P. Zuidema, “Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments”, Atmospheric Measurement Techniques 15 (2022) 61. https://doi.org/10.5194/amt-15-61-2022.

[6] K. S. Carslaw, “Aerosol in the climate system”, in Aerosol and Climate, K. S. Carslaw (Ed.), Elsevier, Amsterdam, Netherlands, 2022, pp. 9–52. https://doi.org/10.1016/C2019-0-00121-5.

[7] G. Cesana, D. E. Waliser, D. Henderson, T. S. L’Ecuyer, X. Jiang & J.-L. F. Li, “The vertical structure of radiative heating rates: a multimodel evaluation using a-train satellite observations”, Journal of Climate 32 (2019) 1573. https://doi.org/10.1175/JCLI-D-17-0136.1

[8] Q. Lu, C. Liu, D. Zhao, C. Zeng, J. Li, C. Lu, J. Wang & B. Zhu, “Atmospheric heating rate due to black carbon aerosols: uncertainties and impact factors”, Atmospheric Research 240 (2020) 104891. https://doi.org/10.1016/j.atmosres.2020.104891

[9] G. Myhre, C. E. L. Myhre, B. H. Samset & T. Storelvmo, “Aerosols and their relation to global climate and climate sensitivity”, Nature Education Knowledge 4 (2013) 7. https://www.researchgate.net/profile/Cathrine-Lund-Myhre/publication/259117107_Aerosols_and_their_Relation_to_Global_Climate_and_Climate_Sensitivity/links/557ecb1208ae26eada8f4606/Aerosols-and-their-Relation-to-Global-Climate-and-Climate-Sensitivity.pdf.

[10] J. Zou, J. Sun, A. Ding, M. Wang, W. Guo & C. Fu, “Observation-based Estimation of Aerosol-induced Reduction of Planetary Boundary Layer Height”, Advances in Atmospheric Sciences 34 (2017) 1057. https://doi.org/10.1007/s00376-016-6259-8.

[11] S. K. Satheesh, S. Deepshikha & J. Srinivasan, “Impact of dust aerosols on Earth-atmosphere clear-sky albedo and its short wave radiative forcing over African and Arabian regions”, International Journal of Remote Sensing 27 (2006) 1691. https://doi.org/10.1080/01431160500462162.

[12] S. Kato, F. G. Rose, S. H. Ham, D. A. Rutan, A. Radkevich, T. E. Caldwell, S. Sun-mack, W. F. Miller & Y. Chen, “Radiative heating rates computed with clouds derived from satellite-based passive and active sensors and their effects on generation of available potential energy”, J. Geophysical Research: Atmospheres 124 (2019) 1720. https://doi.org/10.1029/2018JD028878.

[13] A. B. M. Collow, M. A. Miller, L. C. Trabachino, M. P. Jensen & M. Wang, “Radiative heating rate profiles over the southeast Atlantic Ocean during the 2016 and 2017 biomass burning seasons”, Atmospheric Chemistry and Physics 20 (2020) 10073. https://doi.org/10.5194/acp-20-10073-2020.

[14] S. Ramachandran, M. Rupakheti & M. G. Lawrence, “Aerosol ? induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition”, Scientific Reports 10 (2020) 1. https://doi.org/10.1038/s41598-020-76936-z.

[15] C. M. Liu & S. S. Ou, “Effects of tropospheric aerosols on the solar radiative heating in a clear atmosphere”, Theoretical and Applied Climatology 41 (1990) 97. https://doi.org/10.1007/BF00866432

[16] M. Mallet, P. Tulet, D. Serça, F. Solmon, O. Dubovik, J. Pelon, V. Pont & O. Thouron, “Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006”, Atmospheric Chemistry and Physics 9 (2009) 7143. https://doi.org/10.5194/acp-9-7143-2009

[17] C. Lema??tre, C. Flamant, J. Cuesta, J. C. Raut, P. Chazette, P. Formenti & J. Pelon, “Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa”, Atmospheric Chemistry and Physics 10 (2010) 8131. https://doi.org/10.5194/acp-10-8131-2010.

[18] P. Pilewskie, J. Pommier, R. Bergstrom, W. Gore, S. Howard, M. Rabbette, B. Schmid, P. V. Hobbs & S. C. Tsay, “Solar spectral radiative forcing during the Southern African Regional Science Initiative”, Journal of Geophysical Research 108 (2003) 1. https://doi.org/10.1029/2002JD002411.

[19] P. Kokkalis, O. Soupiona, C. Papanikolaou, R. Foskinis, M. Mylonaki, S. Solomos, S. Vratolis, V. Vasilatou, E. Kralli, D. Anagnou & A. Papayannis, “Radiative effect and mixing processes of a long-lasting dust event over athens, greece, during the COVID-19 period”, Atmosphere. 12 (2021) 1. https://doi.org/10.3390/atmos12030318.

[20] C. Zhao, X. Liu, L. R. Leung, B. Johnson, S. A. McFarlane, W. I. Gustafson Jr., J. D. Fast & R. Easter, “The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments”, Atmospheric Chemistry and Physics 10 (2010) 8821. https://doi.org/10.5194/acp-10-8821-2010.

[21] F. Malavelle, V. Pont, M. Mallet, F. Solmon, B. Johnson, J. F. Leon & C. Liousse, “Simulation of aerosol radiative effects over West Africa during DABEX and AMMA SOP ? 0”, Journal of Geophysical Research 116 (2011) 1. https://doi.org/10.1029/2010JD014829.

[22] J. W. Makokha, J. O. Odhiambo & J. G. Shem, “Long Term Assessment of Aerosol Radiative Forcing over Selected Sites of East Africa”, Journal of Geoscience and Environment Protection 6 (2018) 22. https://doi.org/10.4236/gep.2018.64002.

[23] K. R. Kumar, R. Boiyo, R. Khan, N. Kang, X. Yu, V. Sivakumar, D. Griffith & N. L. Devi, “Multi-year analysis of aerosol optical properties and implications to radiative forcing over urban Pretoria, South Africa”, Theoretical and Applied Climatology 141 (2020) 343. https://doi.org/10.1007/s00704-020-03183-7.

[24] B. Pathak, G. Kalita, K. Bhuyan, P. K. Bhuyan & K. K. Moorthy, “Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India”, Journal of Geophysical Research: Atmospheres 115 (2010) D19204. https://doi.org/10.1029/2009JD013462

[25] T. Nishizawa, S. Asano, A. Uchiyama & A. Yamazaki, “Seasonal variation of aerosol direct radiative forcing and optical properties estimated from ground-based solar radiation measurements”, Journal of Atmospheric Sciences 61 (2004) 57. https://doi.org/10.1175/1520-0469(2004)061<0057>2.0.CO;2.

[26] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley & A. L. Goldberger, “Mosaic organizations of DNA nucleotides”, Physical Review E 49 (1994) 1685. https://doi.org/10.1103/PhysRevE.49.1685.

[27] S. Damouras, M. D. Chang, E. Sejdi? & T. Chau, “An empirical examination of detrended fluctuation analysis for gait data”, Gait & Posture 31 (2010) 336. https://doi.org/10.1016/j.gaitpost.2009.12.002.

[28] D. Chen & H. W. Chen, “Using the Köppen classification to quantify climate variation and change: an example for 1901–2010”, Environmental Development 6 (2013) 69. https://doi.org/10.1016/j.envdev.2013.03.007.

[29] T. Igbawua, M. Hembafan & F. Ujoh, “Suitability analysis for yam production in Nigeria using satellite and observation data”, Journal. Nigerian. Society of Physical Science 4 (2022) 883. https://doi.org/10.46481/jnsps.2022.883.

[30] Global Modeling and Assimilation Office (GMAO), “tavgM 2d aer Nx: MERRA-2 2D, Monthly Mean, Time-Averaged, Single-Level, Assimilated Aerosol Diagnostics (0.625x0.5), version 5.12.4.” Greenbelt, MD, USA: Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), 2015. [Online]. (Accessed November 1, 2022). https://doi.org/10.5067/FH9A0MLJPC7N.

[31] Global Modeling and Assimilation Office (GMAO), “tavgM 2d rad Nx: MERRA-2 2D, Monthly Mean, Time-Averaged, Single-Level, Radiation Diagnostics (0.625x0.5), version 5.12.4.” Greenbelt, MD, USA: Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), 2015. [Online]. (Accessed October 23, 2023). https://doi.org/10.5067/OU3HJDS973O0.

[32] Global Modeling and Assimilation Office (GMAO), “instM 2d gas Nx: MERRA-2 2D, Monthly Mean, Single-Level, Assimilated Gas Diagnostics (0.625x0.5), version 5.12.4.” Greenbelt, MD, USA: Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), 2015. [Online]. (Accessed June 20, 2022). https://doi.org/10.5067/XOGNBQEPLUC5.

[33] J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego, S. Havlin & A. Bunde, “Detecting long-range correlations with detrended uctuation analysis”, Physica A 295 (2001) 441. https://doi.org/10.1016/S0378-4371(01)00144-3.

[34] G. W. Khamala, J. W. Makokha, R. Boiyo & K. R. Kumar, “Spatiotemporal analysis of absorbing aerosols and radiative forcing over environmentally distinct stations in East Africa during 2001–2018”, Science of the Total Environment 864 (2023) 161041. https://doi.org/10.1016/j.scitotenv.2022.161041.

[35] S. S. Aladodo, C. O. Akoshile, T. B. Ajibola, M. Sani, O. A. Iborida & A. A. Fakoya, “Seasonal tropospheric aerosol classification using AERONET spectral absorption properties in African locations”, Aerosol Sci Eng. 6 (2022) 246. https://doi.org/10.1007/s41810-022-00140-x.

[36] N. A. Caserini & P. Pagnottoni, “Effective transfer entropy to measure information flows in credit markets”, Statistical Methods & Applications 31 (2022) 729. https://doi.org/10.1007/s10260-021-00614-1.

[37] H. B. Mann, “Nonparametric tests against trend”, Econometrica: Journal of the Econometric Society 13 (1945) 245. https://doi.org/10.2307/1907187.

[38] M. G. Kendall, Rank correlation methods, Griffin, London, UK, 1948. https://psycnet.apa.org/record/1948-15040-000.

[39] M. A. Balarabe, F. Tan, K. Abdullah & M. N. M. Nawawi, “Temporal-spatial variability of seasonal aerosol index and visibility–a case study of Nigeria”, presented at International Conference on Space Science and Communication (IconSpace), Langkawi, Malaysia, 2015. [Online]. https://doi.org/10.1109/IconSpace.2015.7283769.

[40] P. Tian, D. Liu, D. Zhao, C. Yu, Q. Liu, M. Huang, Z. Deng, L. Ran, Y. Wu, S. Ding, K. Hu, G. Zhao & C. Zhao, “In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing”, Atmospheric Chemistry and Physics 20 (2020) 2603. https://doi.org/10.5194/acp-20-2603-2020.

[41] V. S. Nair, S. S. Babu, M. R. Manoj, K. K. Moorthy & M. Chin, “Direct radiative effects of aerosols over South Asia from observations and modeling”, Climate Dynamics 49 (2017) 1411. https://doi.org/10.1007/s00382-016-3384-0.

[42] M. Collaud Coen, E. Andrews, A. Alastuey, T. P. Arsov, J. Backman, B. T. Brem, N. Bukowiecki, C. Couret, K. Eleftheriadis, H. Flentje, M. Fiebig, M. Gysel-Beer, J. L. Hand et al., “Multidecadal trend analysis of in situ aerosol radiative properties around the world”, Atmospheric Chemistry and Physics 20 (2020) 8867. https://doi.org/10.5194/acp-20-8867-2020.

[43] A. K. Srivastava, S. Singh, S. Tiwari & D. S. Bisht, “Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin”, Environmental Science and Pollution Research 19 (2012) 1144. https://doi.org/10.1007/s11356-011-0633-y.

[44] R. P. Guleria & J. C. Kuniyal, “Characteristics of atmospheric aerosol particles and their role in aerosol radiative forcing over the northwestern Indian Himalaya in particular and over India in general”, Air Quality, Atmosphere & Health 9 (2016) 795. https://doi.org/10.1007/s11869-015-0381-0.

[45] J. L. Gómez-Amo, A. di Sarra & D. Meloni, “Sensitivity of the atmospheric temperature profile to the aerosol absorption in the presence of dust”, Atmospheric Environment 98 (2014) 331. https://doi.org/10.1016/j.atmosenv.2014.09.008.

[46] A. K. Srivastava, B. J. Mehrotra, A. Singh, V. Singh, D. S. Bisht, S. Tiwari & M. K. Srivastava, “Implications of different aerosol species to direct radiative forcing and atmospheric heating rate”, Atmospheric Environment 241 (2020) 117820. https://doi.org/10.1016/j.atmosenv.2020.117820.

[47] S. Kumar & P. C. S. Devara, “A long-term study of aerosol modulation of atmospheric and surface solar heating over Pune, India”, Tellus B: Chemical and Physical Meteorology 64 (2012) 18420. https://doi.org/10.3402/tellusb.v64i0.18420.

[48] H. Che, M. Segal-Rozenhaimer, L. Zhang, C. Dang, P. Zuidema, A. J. Sedlacek III & C. Flynn, “Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic”, Atmospheric Chemistry and Physics 22 (2022) 8767. https://doi.org/10.5194/acp-2022-160.

[49] L. Zhang, Z. Luo, W. Du, G. Li, G. Shen, H. Cheng & S. Tao, “Light absorption properties and absorption emission factors for indoor biomass burning”, Environmental Pollution 267 (2020) 115652. https://doi.org/10.1016/j.envpol.2020.115652.

[50] J. Zhai, X. Lu, L. Li, Q. Zhang, C. Zhang, H. Chen & J. Chen, “Size-resolved chemical composition, effective density, and optical properties of biomass burning particles”, Atmospheric Chemistry and Physics 17 (2017) 7481. https://doi.org/10.5194/acp-17-7481-2017.

[51] S. S. Raj, O. O. Kruger, A. Sharma, U. Panda, C. Pohlker, D. Walter, J. Forster, R. P. Singh, et al., “Planetary boundary layer height modulates aerosol –water vapor interactions during winter in the megacity of delhi journal of geophysical research: atmospheres”, Journal of Geophysical Research: Atmospheres 126 (2021) 1. https://doi.org/10.1029/2021JD035681.

[52] J. Zou, J. Sun, A. Ding, M. Wang, W. Guo & C. Fu, “Observation-based estimation of aerosol-induced reduction of planetary boundary layer height”, Advances in Atmospheric Sciences 34 (2017) 1057. https://doi.org/10.1007/s00376-016-6259-8.

[53] H. Wang, Z. Li, Y. Lv, H. Xu, K. li, D. Li, W. Hou, F. Zheng, Y. Wei & B. Ge, “Observational study of aerosol-induced impact on planetary boundary layer based on lidar and sunphotometer in Beijing”, Environmental Pollution 252 (2019) 897. https://doi.org/10.1016/j.envpol.2019.05.070.

[54] C. D. Roberts, M. D. Palmer, R. P. Allan, D. G. Desbruyeres. P. Hyder, C. Liu & D. Smith, “Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content”, Journal of Geophysical Research: Oceans 122 (2016) 1. https://doi.org/10.1002/2016JC012278.

[55] J. Wang & J. A. Carton, “Seasonal heat budgets of the north pacific and north atlantic oceans”, Journal of Physical Oceanography 32 (2002) 3474. https://doi.org/10.1175/1520-0485(2002)032%3c3474:SHBOTN%3e2.0.CO;2.

[56] M. R. Perrone, A. M. Tafuro & S. Kinne, “Dust layer effects on the atmospheric radiative budget and heating rate profiles”, Atmospheric Environment 59 (2012) 344. https://doi.org/10.1016/j.atmosenv.2012.06.012.

Published

2025-05-01

How to Cite

Spatio-temporal assessment of aerosol-induced atmospheric heating rates in Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 1918. https://doi.org/10.46481/jnsps.2025.1918

Issue

Section

Earth Sciences

How to Cite

Spatio-temporal assessment of aerosol-induced atmospheric heating rates in Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 1918. https://doi.org/10.46481/jnsps.2025.1918