Convolution equation and operators on the Euclidean motion group

Authors

  • U. N. Bassey Department of Mathematics, University of Ibadan, Ibadan, Nigeria
  • U. E. Edeke Department of Mathematics, University of Calabar, Calabar, Nigeria

Keywords:

Euclidean Motion group, invariant differential operator, Distribution, Universal enveloping algebra

Abstract

Let $G = \mathbb{R}^2\rtimes SO(2)$  be the Euclidean motion group, let g be the Lie algebra of G and let U(g) be the universal enveloping algebra of g. Then U(g) is an infinite dimensional, linear associative and non-commutative algebra consisting of invariant differential operators on G. The Dirac measure on G is represented by $\delta_G$, while the convolution product of functions or measures on G is represented by $\ast$. Among other notable results, it is demonstrated that for each u in U(g), there is a distribution E on G such that the convolution equation $u\ast E = \delta_G$ is solved by method of convolution. Further more, it is established that the (convolution) operator $A^\prime : C^\infty_c(G)\rightarrow C^\infty(G),$, which is defined as $A^\prime f = f\ast T^n\delta(t)$ extends to a bounded linear operator on $L^2(G)$, for $f\in C^\infty_c(G)$, the space of infinitely differentiable functions on G with compact support. Furthermore, we demonstrate that the left convolution operator LT denoted as $L_Tf = T\ast f$ commutes with left translation, for $T\in D^\prime(G)$.

Dimensions

K. El-Hussein, “A fundamental solution of an invariant differential operator on the heisenberg group”, International Mathematical Forum 4 (2009) 601. https://api.semanticscholar.org/CorpusID:56388201.

F. D. Battesti, Solvability of differential operators I: direct and semidirect products of lie groups, Miniconference on Operator Theory and Partial Differential Equations, Australian National University, Mathematical Sciences Institute, 1986, pp. 60–65. https://projecteuclid.org/ebooks/proceedings-of-the-centre-for-mathematics-and-its-applications/Miniconference-on-Operator-Theory-and-Partial-Differential-Equations/chapter/Solvability-of-differential-operators-I--direct-and-semidirect-products/pcma/1416336589 .

L. Hormander, The analysis of linear partial differential operators I, Springer - Verlag, Berlin Heidelberg, 1990, pp. 978–3. https://doi.org/10.1007/978-3-642-61497-2.

B. Malgrange, “Existence and approximation des solutions des equations aux derivees partielles et equations de convolutions”, Ann. Inst. Fourier Grenoble 6 (1995) 271. http://www.numdam.org/item/AIF_1956_6_271_0/.

M. F. Atiyah, “Resolution of singularities and division of distributions”, Comm. on Pure and App. Math. 23 (1970) 145. https://doi.org/10.1002/cpa.3160230202.

H. Lewy, “An example of a smooth linear partial differential equation without solution”, Ann. math. 66 (1957) 155. https://doi.org/10.2307/1970121.

F. Astengo, B. Blasio & F. Ricci, “The Schwrtz correspondence for the complex motion group”, Journal of Functional Analysis 258 (2023) 110068. https://doi.org/10.1016/j.jfa.2023.110068.

C. E. Yarman & B. Yazici, A Wiener filtering approach over the Euclidean motion group for radon transform inversion, Proceeding of SPIE – The international Society for Optical Engineering, May 2003, pp. 1884–1893. https://doi.org/10.1117/12.481372.

G. S. Chirikjian & A. B. Kyatkin, Engineering applications of non commutative harmonic analysis: with emphasis on rotation and motion groups CRC Press, New York, 2000. https://www.amazon.com/Engineering-Applications-Noncommutative-Harmonic-_Analysis/dp/0849307481.

J. G. Christensen, G. Olafsson & S. D. Casey, Sampling, amenability and the kunze - stein phenomenon, International Conference on Sampling Theory and Application (SampTA), IEEE, 2015, pp. 68–72. https://repository.lsu.edu/mathematics_pubs/1111/.

C. E. Yarman & B. Yazici, “Euclidean motion group representations and the singular value decomposition of the radon transform”, Integral Transforms and Special Functions 18 (2007) 59. https://doi.org/10.1080/10652460600856450.

D. Roland, “Convolution equations on the Lie group (-1,1)”, Georgian Mathematical Journal 30 (2022) 683. http://doi.org/10.48550/arXiv.2208.08765.

K. Issa, R. A. Belloa & U. J. Abubakar, “Approximate analytical solution of fractional-order generalized integro-differential equations via fractional derivative of shifted Vieta-Lucas polynomial”, Nigerian Society of Physical Sciences 6 (2024) 1821. https://openurl.ebsco.com/EPDB%3Agcd%3A13%3A29802269/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A175928203&crl=c.

F. Astengo, B. Blasio & F. Ricci, “On The Schwartz correspondence for gelfand pairs of polynomial growth”, European Mathematical Scociety 32 (2021) 79. https://ems.press/journals/rlm/articles/850586.

J. Adamu, B. M. Abdulhamid, D. T. Gbande & A. S. Halliru, “Simple motion pursuit differential game problem of many players with integral and geometric constraints on controls function”, Journal of the Nigerian Society of Physical Sciences 3 (2021) 12. https://journal.nsps.org.ng/index.php/jnsps/article/view/148.

J. H. He, M. H. Taha, M. A. Ramadan & G. M. Moatimid, “Improved block-pulse functions for numerical solution of mixed Volterra fredholm integral equations”, Axioms 10 (2021) 200. https://doi.org/10.3390/axioms10030200.

M. Bhowmik, S. Sen, “An uncertainty principole of paley and wiener on euclidean motion group”, Journal of Fourier Analysis and Application 23 (2017) 1445. https://doi.org/10.1007/s00041-016-9510-x.

N. I. Vilenkin, Special functions and the theory of group representations, American Mathematical Soc., 1991, pp. Cha–IX. https://doi.org/10.1090/mmono/022.

A. Markoe, Analytic tomography, Cambridge University Press, 2006. https://cir.nii.ac.jp/crid/1130282270379328512.

O. K. Christer, “Estimates for solutions to discrete convolution equations”, Mathematika 61 (2015) 295. https://doi.org/10.1112/S0025579315000108.

J. Dietsel & S. Angela, Joys of Haar measure, American Mathematical Society, 2014. https://bookstore.ams.org/gsm-150.

K. Issa, B. M. Yisa & J. Biazar, “Numerical solution of space fractional diffusion equation using shifted Gegenbauer polynomials”, Computational Methods for Differential Equations 10 (2022) 431. https://doi.org/10.22034/cmde.2020.42106.1818.

S. C. Bagchi, A First course on representation theory and linear lie group, University Press(India)Limited, 2000. https://books.google.mu/books?id=R8R3K3YLQt8C&printsec=frontcover&source=gbs_atb#v=onepage&q&f=false.

I. M. Gelfand, S. G. Gindikin & M. I. Graev, Selected topics in integral geometry, American Mathematical Society, 2003. https://cir.nii.ac.jp/crid/1360001113999220864.

M. Sugiura, Unitary repreentation and harmonic analysis: an introduction, North- Holland, New York, 1990. https://shop.elsevier.com/books/unitary-representations-and-harmonic-analysis/sugiura/978-0-444-88593-7.

F. Beffa, “Convolution equations”, in Weakly non-linear system, Springer, Cham. 2023 https://www.researchgate.net/publication/375026672_Convolution_Equations.

F. D. Battesti & A. H. Dooley, Solvability of differential operators II: Semi simple lie groups, Proceedings of the Center for Mathematical Analysis, Australian National University, Canberra, 1986, pp. 85–94. https://researchportal.bath.ac.uk/en/publications/solvability-of-differential-operators-ii-semisimple-lie-groups.

Published

2024-09-08

How to Cite

Convolution equation and operators on the Euclidean motion group. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2029. https://doi.org/10.46481/jnsps.2024.2029

Issue

Section

Mathematics & Statistics

How to Cite

Convolution equation and operators on the Euclidean motion group. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2029. https://doi.org/10.46481/jnsps.2024.2029