Throughflow effect on bi-disperse convection in Rivlin-Ericksen fluid

Authors

  • Pushap Lata Sharma Department of Mathematics & Statistics, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
  • Deepak Bains Department of Mathematics & Statistics, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
  • Pankaj Thakur Faculty of Science and Technology, ICFAI University, Baddi, Solan, 180004, India https://orcid.org/0000-0001-8119-2697

Abstract

In this investigation, we delve into the influence of throughflow on the phenomenon of bi-disperse convection within Rivlin-Ericksen fluid. In the context of examining bi-disperse convection within this specific type of fluid, the throughflow effect is considered to have a uniform vertical distribution. The primary focus of this study centers on evaluating the system’s linear stability. To achieve this, we employ normal mode analysis to compute the Darcy-Rayleigh number at the onset of convection. This Darcy-Rayleigh number is computed for both stationary and oscillatory convection modes. Furthermore, we conduct a comprehensive analysis and present the results in graphical form to illustrate the impact of various parameters, including Peclet number and kinematic viscoelastic parameter, on both stationary and oscillatory convection. Our research findings demonstrate that when Peclet number Pr1 < 0, it leads to destabilising effect on both stationary and oscillatory convections. Conversely, when Peclet number Pr1 > 0, it induces stabilising effect on both stationary as well as oscillatory convections.

Dimensions

Z. Q. Chen, P. Cheng & C. T. Hsu, “A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media”, International Communications in Heat and Mass Transfer 27 (2000) 601. https://doi.org/10.1016/S0735-1933(00)00142-1.

D. A. Nield & A. V. Kuznetsov, “A two-velocity temperature model for a bi-dispersed porous medium: forced convection in a channel”, Transport in Porous Media 59 (2005) 325. https://doi.org/10.1007/s11242-004-1685-y.

D. A. Nield & A. V. Kuznetsov, “Heat transfer in bidisperse porous media”, Transport Phenomena in Porous Media III (2005) 34. https://doi.org/10.1016/B978-008044490-1/50006-5.

D. A. Nield & A. V. Kuznetsov, “The onset of convection in a bidisperse porous medium”, International Journal of Heat and Mass Transfer 49 (2006) 3068. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.008.

G. Imani & K. Hooman, “Lattice Boltzmann pore scale simulation of natural convection in a differentially heated enclosure filled with a detached or attached bidisperse porous medium”, Transport in Porous Media 116 (2017) 91. https://doi.org/10.1007/s11242-016-0766-z.

M. Gentile & B. Straughan, “Bidispersive thermal convection”, International Journal of Heat and Mass Transfer 114 (2017) 837. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.095.

M. Gentile & B. Straughan, “Bidispersive thermal convection with relatively large macropores”, Journal of Fluid Mechanics 898 (2020) A14. https://doi.org/10.1017/jfm.2020.411.

A. J. Badday & A. J. Harfash, “Chemical reaction effect on convection in bidispersive porous medium”, Transport in Porous Media 137 (2021) 381. https://doi.org/10.1007/s11242-021-01566-6.

P. Falsaperla, G. Mulone & B. Straughan, “Bidispersive-inclined convection”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2016) 20160480. https://doi.org/10.1098/rspa.2016.0480.

F. Capone, R. De Luca, L. Fiorentino & G. Massa, “Bi-disperse convection under the action of an internal heat source”, International Journal of Non-Linear Mechanics 150 (2023) 104360. https://doi.org/10.1016/j.ijnonlinmec.2023.104360.

G. C. Rana & R. C. Thakur, “Effect of suspended particles on thermal convection in Rivlin-Ericksen fluid in a Darcy-Brinkman porous medium”, Journal of Mechanical Engineering and Sciences 2 (2012) 162. https://doi.org/10.15282/jmes.2.2012.3.0014%20.

R. Chand & G. C. Rana, “Dufour and Soret effects on the thermosolutal instability of Rivlin-Ericksen elastico-viscous fluid in porous medium”, Zeitschrift für Naturforschung A 67 (2012) 685. https://doi.org/10.5560/zna.2012-0074.

R. Chand & G. C. Rana, “Thermal instability of Rivlin?Ericksen elastico-viscous nanofluid saturated by a porous medium”, Journal of fluids engineering 134 (2012) 121203. https://doi.org/10.1115/1.4007901.

G. C. Rana, “Hydromagnetic thermosolutal instability of Rivlin-Ericksen rotating fluid permeated with suspended particles and variable gravity field in porous medium”, Acta Universitatis Sapientiae 6 (2014) 24. https://doi.org/10.2478/ausm-2014-0016.

G. C. Rana & R. Chand, “Stability analysis of double-diffusive convection of Rivlin-Ericksen elastico-viscous nanofluid saturating a porous medium: a revised model”, Forschung im Ingenieurwesen 79 (2015) 87. https://doi.org/10.1007/s10010-015-0190-5.

G. C. Rana, R. Chand & V. Sharma, “Thermal instability of a Rivlin-Ericksen nanofluid saturated by a Darcy-Brinkman porous medium: a more realistic model”, Engineering Transactions 64 (2016) 271. https://doi.org/10.24423/engtrans.368.2016.

F. M. Sutton, “Onset of convection in a porous channel with net through flow”, Physics of Fluids 13 (1970) 1931. https://doi.org/10.1063/1.1693188.

D. Petrolo, L. Chiapponi, S. Longo, M. Celli, A. Barletta & V. Di Federico, “Onset of Darcy-Bénard convection under throughflow of a shear-thinning fluid”, Journal of Fluid Mechanics 889 (2020) R2. https://doi.org/10.1017/jfm.2020.84.

F. Capone, J. A. Gianfrani, G. Massa & D. A. S. Rees, “ A weakly nonlinear analysis of the effect of vertical throughflow on Darcy- Bénard convection”, Physics of Fluids 35 (2023) 014107. https://doi.org/10.1063/5.0135258.

F. Capone, R. De Luca, & G. Massa, “Throughflow effect on bi-disperse convection?, Ricerche di Matem-atica 73 (2024) 67. https://doi.org/10.1007/s11587-023-00811-y.

A. C. Ruo, W. M. Yan & M. H. Chang, “The onset of natural convection in a horizontal nanofluid layer heated from below”, Heat Transfer 50 (2021) 7764. https://doi.org/10.1002/htj.22252.

G. S. Reddy & R. Ragoju, “Thermal instability of a power?law fluid?saturated porous layer with an internal heat source and vertical throughflow”, Heat Transfer 51 (2022) 2181. https://doi.org/10.1002/htj.22395.

M.K. Awasthi, N. Dutt, A. Kumar & S. Kumar, “Electrohydrodynamic capillary instability of Rivlin?Ericksen viscoelastic fluid film with mass and heat transfer”, Heat Transfer 53 (2023) 115. https://doi.org/10.1002/htj.22944.

S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Dover Publications, Inc., New York, 2013. https://www.amazon.com/Hydrodynamic-Hydromagnetic-Stability-International-Monographs/dp/048664071X.

P. L. Sharma, D. Bains & P. Thakur, “Thermal instability of rotating Jeffrey nanofluids in porous media with variable gravity”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1366. https://doi.org/10.46481/jnsps.2023.1366.

P. L. Sharma, D. Bains & G. C. Rana, “Effect of variable gravity on thermal convection in Jeffrey nanofluid: Darcy-Brinkman Model”, Numerical Heat Transfer, Part B: Fundamentals 85 (2023) 776. https://doi.org/10.1080/10407790.2023.2256970.

D. Bains & P. L. Sharma, “Thermal instability of hydro-magnetic Jeffrey nanofluids in porous media with variable gravity for: free-free, rigid-rigid and rigid-free boundaries”, Special Topics & Reviews in Porous Media: An International Journal 15 (2024) 51. https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2023048444.

P. L. Sharma, D. Bains, A. Kumar & P. Thakur, “Effect of rotation on thermosolutal convection in Jeffrey nanofluid with porous medium”, Structural Integrity and Life 23 (2023) 299. http://divk.inovacionicentar.rs/ivk/ivk23/299-IVK3-2023-PLS-DB-AK-PT.pdf.

P. L. Sharma, D. Bains & G. C. Rana, “On thermal convection in rotating Casson nanofluid permeated with suspended particles in a Darcy-Brinkman porous medium”, Journal of Porous Media 27 (2024) 73. https://doi.org/10.1615/JPorMedia.2024052821.

D. Bains & P. L. Sharma, “Effect of variable gravity on thermal convection in rotating Jeffrey nanofluid: Darcy-Brinkman model”, Special Topics & Reviews in Porous Media: An International Journal 15 (2024) 25. https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2023049875.

2052

Published

2024-06-04

How to Cite

Throughflow effect on bi-disperse convection in Rivlin-Ericksen fluid. (2024). Journal of the Nigerian Society of Physical Sciences, 6(3), 2052. https://doi.org/10.46481/jnsps.2024.2052

Issue

Section

Mathematics & Statistics

How to Cite

Throughflow effect on bi-disperse convection in Rivlin-Ericksen fluid. (2024). Journal of the Nigerian Society of Physical Sciences, 6(3), 2052. https://doi.org/10.46481/jnsps.2024.2052