Hydrodynamic Casson hybrid nanofluid flow across a stretching sheet in the regime of velocity slip and temperature jump,including viscous dissipation, melting, Soret and Dufour effects

Authors

  • B. Laxmi
    Department of Mathematics & Statistics, Himachal Pradesh University, Summer Hill, Shimla-171005, India
  • K. Chand
    Department of Mathematics & Statistics, Himachal Pradesh University, Summer Hill, Shimla-171005, India
  • P. Thakur
    Department of Mathematics, ICFAI University, Himachal Pradesh, Solan, India
    https://orcid.org/0000-0001-8119-2697

Keywords:

Magnetohydrodynamics, Viscous dissipation, Casson hybrid nanofluid, Soret and Dufour number, Stretching sheet

Abstract

This work explores the magnetohydrodynamics (MHD) viscous, incompressible, Casson hybrid nanofluid over a stretched sheet which is a well-known non-Newtonian fluid. The analysis incorporates the effects of viscous dissipation, melting, Soret and Dufour effects, within the frameworks of velocity slip and temperature jump boundary conditions. Copper (Cu) and alumina oxide (Al2 O3 ) have been employed as nanoparticles, while water (H2 O) has been considered as the base fluid. This mixture is used to increase the fluid’s thermal characteristics for better heat transfer efficiency. To simplify the complex governing partial differential equations describing the flow and heat transfer characteristics, similarity transformations were employed, which reduced the system to a set of coupled, ordinary differential equations that are nonlinear. The bvp4c function in MATLAB was used to solve these modified equations numerically. The study looks into the effects of various parameters on flow and heat transfer characteristics, such as the volume fractions of alumina and copper, the Prandtl Number, the Radiation parameter, the Darcy permeability, the Magnetic field parameter, the heat source/sink parameter, melting parameter, the Eckert Number, the Soret number, and the Dufour number. Results indicate that the alumina volume fraction influences the velocity, temperature and concentration profiles. Specifically, the aluminium oxide volume fraction parameter causes increases in profiles of temperature, velocity and concentration. With suction and the Casson parameter, the mass transfer rate increases while the heat transfer rate decreases.

Dimensions

[1] L. J. Crane, “Flow past a stretching plate”, Zeitschrift für Angewandte Mathematik und Physik 21 (1970) 645. https://doi.org/10.1007/BF01587695. DOI: https://doi.org/10.1007/BF01587695

[2] C. Y. Wang, “Free convection on a vertical stretching surface”, Journal of Applied Mathematics and Mechanics 69 (1989) 418. https://doi.org/10.1002/zamm.19890691115. DOI: https://doi.org/10.1002/zamm.19890691115

[3] H. I. Andersson, O. R. Hansen & B. Holmedal, “Diffusion of a chemically reactive species from a stretch-ing sheet”, International Journal of Heat Mass Transfer 37 (1994) 659. https://doi.org/10.1016/0017-9310(94)90137-6. DOI: https://doi.org/10.1016/0017-9310(94)90137-6

[4] S. U. S. Choi & J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles”, Argonne National Lab.(ANL) (1995).

[5] N. Casson, “Flow equation for pigment-oil suspensions of the printing ink-type”, in Rheology of disperse system, Pergamon Press, New York, USA, 1959, pp. 84.

[6] J. Boyd, J. M. Buick & S. Green, “Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method”, Physics of Fluids 19 (2007) 093103. https://doi.org/10.1063/1.2772250. DOI: https://doi.org/10.1063/1.2772250

[7] S. Mukhopadhyay, P. R. De, K. Bhattacharyya & G. C. Layek, “Casson fluid flow over an unsteady stretching surface”, Ain Shams Engineering Journal 4 (2013) 933. https://doi.org/10.1016/j.asej.2013.04.004. DOI: https://doi.org/10.1016/j.asej.2013.04.004

[8] S. Pramanik, “Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation”, Ain Shams Engineering Journal 5 (2014) 205. https://doi.org/10.1016/j.asej.2013.05.003. DOI: https://doi.org/10.1016/j.asej.2013.05.003

[9] S. P. A. Devi & S. S. U. Devi, “Numerical investigation of hydromagnetic hybrid Cu-Al2 O3 /water nanofluid flow over a permeable stretching sheet with suction”, International Journal of Nonlinear Sciences and Numerical Simulation 17 (2016) 249. http://dx.doi.org/10.1515/ijnsns-2016-0037. DOI: https://doi.org/10.1515/ijnsns-2016-0037

[10] T. Hayat & S. Nadeem, “Heat transfer enhancement with Ag-CuO/water hybrid nanofluid”, Results in Physics 7 (2017) 2317. https://doi.org/10.1016/j.rinp.2017.06.034. DOI: https://doi.org/10.1016/j.rinp.2017.06.034

[11] G. V. R. Reddy & Y. H. Krishna, “Soret and Dufour effects on MHD micropolar fluid flow over a linearly stretching sheet, through a non-darcy porous medium”, International Journal of Applied Mechanics and Engineering 23 (2018) 485. http://dx.doi.org/10.2478/ijame-2018-0028. DOI: https://doi.org/10.2478/ijame-2018-0028

[12] A. Shojaei, A. J. Amiri, S. S. Ardahaie, K. Hosseinzadeh & D. D. Ganji, “Hydrothermal analysis of non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects”, Case Studies in Thermal Engineering 13 (2019) 100384. https://doi.org/10.1016/j.csite.2018.100384. DOI: https://doi.org/10.1016/j.csite.2018.100384

[13] K. V. Reddy, G. V. R. Reddy, A. Akgül, R. Jarrar, H. Shanak & J. Asad, “Numerical solution of MHD Casson fluid flow with variable properties across an inclined porous stretching sheet”, AIMS Mathematics 12 (2022) 20524. https://doi.org/10.3934/math.20221124. DOI: https://doi.org/10.3934/math.20221124

[14] M. M. Nandeppanavar, “Melting heat transfer analysis of non-Newtonian Casson fluid due to moving plate”, Engineering Computations 35 (2018) 1301. https://doi.org/10.1108/EC-04-2017-0148. DOI: https://doi.org/10.1108/EC-04-2017-0148

[15] M. Jawad, A. Saeed, P. Kumam, Z. Shah & A. Khan, “Analysis of boundary layer MHD Darcy-Forchheimer radiative nanofluid flow with Soret and Dufour effects by means of Marangoni convection”, Case Studies in Thermal Engineering 23 (2021) 100792. https://doi.org/10.1016/j.csite.2020.100792. DOI: https://doi.org/10.1016/j.csite.2020.100792

[16] R. Malik, A. Munir, H. Sadaf & M. Khan, “Melting heat transfer by forced convection of Sisko fluid”, Waves in Random and Complex Media 35 (2022) 4761. https://doi.org/10.1080/17455030.2022.2064560. DOI: https://doi.org/10.1080/17455030.2022.2064560

[17] S. Sharma, M. Goyal & A. Dadheech, “Melting, Soret and Dufour effect on MHD Casson fluid flow over a stretching sheet with slip conditions”, Journal of Engineering Mathematics 146 (2024). https://doi.org/10.1007/s10665-024-10364-0. DOI: https://doi.org/10.1007/s10665-024-10364-0

[18] A. Ali, Rabia, S. Hussain & M. Asharf, “Theoretical investigation of unsteady MHD Casson hybrid nanofluid in porous medium: Application of thermal radiations and nanoparticle”, Journal of Radiation Research and Applied Sciences 17 (2024) 101029. https://doi.org/10.1016/j.jrras.2024.101029. DOI: https://doi.org/10.1016/j.jrras.2024.101029

[19] M. B. Patil, K. C. Shobha, S. Bhattacharyya & Z. Said, “Soret and Dufour effects in the flow of Casson nanofluid in a vertical channel with thermal radiation: entropy analysis”, Journal of Thermal Analysis and Calorimetry 148 (2023) 2857. https://doi.org/10.1007/s10973-023-11962-3. DOI: https://doi.org/10.1007/s10973-023-11962-3

[20] A. Olkha & A. Dadheech, “Second law analysis for radiative magnetohydrodynamics slip flow for two different non-Newtonian fluid with heat source”, Journal of Nanofluids 10 (2021) 447. http://dx.doi.org/10.1166/jon.2021.1797. DOI: https://doi.org/10.1166/jon.2021.1797

Published

2025-07-30

How to Cite

Hydrodynamic Casson hybrid nanofluid flow across a stretching sheet in the regime of velocity slip and temperature jump,including viscous dissipation, melting, Soret and Dufour effects. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2936. https://doi.org/10.46481/jnsps.2025.2936

Issue

Section

Mathematics & Statistics

How to Cite

Hydrodynamic Casson hybrid nanofluid flow across a stretching sheet in the regime of velocity slip and temperature jump,including viscous dissipation, melting, Soret and Dufour effects. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4), 2936. https://doi.org/10.46481/jnsps.2025.2936

Most read articles by the same author(s)