On mathematical modelling of optimal control of typhoid fever with efficiency analysis

Authors

  • Omowumi F. Lawal Department of Mathematical Sciences, Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria
  • Tunde T. Yusuf Department of Mathematical Sciences, Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria
  • Afeez Abidemi Department of Mathematical Sciences, Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria

Keywords:

Typhoid fever, Medically hygienic, Optimal control, Efficiency analysis

Abstract

Typhoid fever is a fatal infectious disease that is endemic in most parts of the world, accounting for millions of cases and thousands of deaths from the disease annually. Despite several mathematical models for control of the disease, typhoid fever remains a threat, especially in Africa, South and Southeast Asia, South America and the Indian subcontinent, necessitating the need to propose an optimal control strategy for the transmission dynamics of typhoid fever. Thus, this research formulates an optimal control model for the transmission dynamics of typhoid fever by including a medically hygienic compartment in the model. To reduce the spread of the disease, the study incorporates environmental sanitation with personal hygiene practices and medical treatment as control strategies to examine their combined impact on typhoid fever prevention and control. The necessary conditions for the existence of the optimal solution to the formulated optimal control problem were derived based on Pontryagin's Maximum Principle. The resulting optimality system was then solved numerically using the fourth-order Runge-Kutta-based scheme. Also, the finding simulation demonstrated the effectiveness of the proposed control strategies in preventing the spread of the disease. In addition, an efficiency analysis was carried out to determine which combinations of the control strategies would be most effective in controlling the alarming spread of the disease. The findings from our study indicate that a combination of environmental sanitation with personal hygiene and treatment was the most efficient in controlling the spread of typhoid fever.

Dimensions

C. S. Marchello, M Birkhold & J. A. Crump, “Complications and mortality of typhoid fever: a global systematic review and meta-analysis”, Journal of Infection 6 (2020) 902. https://doi.org/10.1016/j.jinf.2020.10.030

K. A. Tijani, C. E. Madubueze & R. I. Gweryina, “Typhoid fever dynamical model with cost-effective optimalcontrol”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1579. https://doi.org/10.46481/jnsps.2023.1579.

A. A. Momoh, Y. Afiniki, D. Dethie & A. Abubakar, “Curtailing the spread of typhoid fever: An optimal control approach”, Results in Control and Optimization 13 (2023) 100326. https://doi.org/10.1016/j.rico.2023.100326.

J. E. Meiring & P. I. Johnston, “Typhoid fever: A reduction and a resurgence”, The American Journal of Tropical Medicine and Hygiene 109 (2023) 219. https://doi.org/10.4269/ajtmh.23-0286.

F. O. Lawal, T. T. Yusuf & A. Abidemi, “Modelling the impact of vaccination on transmission dynamics of typhoid fever”, Results in Control and Optimization 13 (2023) 100310. https://doi.org/10.1016/j.rico.2023.100310.

A. Kailan Suhuyini & B. Seidu, “A mathematical model on the transmission dynamics of typhoid fever with treatment and booster vaccination” Frontiers in Applied Mathematics and Statistics 9 (2023) 1151270. https://doi.org/10.3389/fams.2023.1151270.

H. O. Nyaberi & J. S. Musaili, “Mathematical modeling of the impact of treatment on the dynamics of typhoid”, Journal of the Egyptian Mathematical Society 29 (2021) 15. https://doi.org/10.1186/s42787-021-00125-8.

L. Matsebula, F. Nyabadza & J. Mushanyu. “Mathematical analysis of typhoid fever transmission dynamics with seasonality and fear”, Commun. Math. Biol. Neurosci 2021 (2021) 36. https://doi.org/10.28919/cmbn/5590.

O. O. Odikamnoro, I. M. Ikeh, F. N. Okoh, S. C. Ebiriekwe, I. A. Nnadozie, J. O. Nkwuda & G. C. Asobie, “Incidence of malaria/typhoid co-infection among adult population in unwana community, afikpo north local government area, ebonyi state, southeastern nigeria”, African journal of infectious diseases 12 (2018) 33. https://doi.org/10.21010/ajid.v12i1.6.

J. Kim, V. Mogasale, J. Im, E. Ramani & F. Marks, “Updated estimates of typhoid fever burden in sub-saharan africa”, The Lancet Global Health 5 (2017) e969. DOI:https://doi.org/10.1016/S2214-109X(17)30328-5.

B. B. Mirembe, S. Mazeri, R. Callaby, L. Nyakarahuka, C. Kankya & A. Muwonge, “Temporal, spatial and household dynamics of typhoid fever in kasese district, uganda”, Plos one 14 (2019) e0214650. https://doi.org/10.1371/journal.pone.0214650.

O. A. Adesegun, O. O. Adeyemi, O. Ehioghae, D. F. Rabor, T. O. Binuyo, B. A. Alafin, O. B. Nnagha, A. O. Idowu & A. Osonuga, “Current trends in the epidemiology and management of enteric fever in africa: a literature review”, Asian Pacific Journal of Tropical Medicine 13 (2020) 204. https://doi.org/10.4103/1995-7645.283515.

M. Antill´on, J. L. Warren, F. W. Crawford, D. M. Weinberger, E. K¨ur¨um, G. D. Pak, F. Marks & V. E. Pitzer, “The burden of typhoid fever in low-and middle-income countries: a metaregression approach”, PLoS neglected tropical diseases 11 (2017) e0005376. https://doi.org/10.1371/journal.pntd.0005376.

A. Jemilohun, A. Adeyanju & M. Bello, “How useful is the widal test in modern clinical practice in developing countries: a review”, International Journal of Tropical Disease and Health 26 (2017) 1. https://doi.org/10.9734/IJTDH/2017/36691.

A. Mawazo, G. M. Bwire & M. I. Matee, “Performance of widal test and stool culture in the diagnosis of typhoid fever among suspected patients in dar es salaam, tanzania”, BMC research notes 12 (2019) 316. https://doi.org/10.1186/s13104-019-4340-y.

B. Veeraraghavan, A. K. Pragasam, Y. D. Bakthavatchalam & R. Ralph, “Typhoid fever: issues in laboratory detection, treatment options and concerns in management in developing countries”, Future science OA 4 (2018) FSO312. https://doi.org/10.4155%2Ffsoa-2018-0003.

D. Amicizia, L. Arata, F. Z. Angrillo, D. Panatto & R. Gasparini “Overview of the impact of typhoid and paratyphoid fever. utility of ty21a vaccine (vivotif®)”, Journal of preventive medicine and hygiene 58 (2017) E1. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5432773/.

R. Milligan, M. Paul, M. Richardson & A. Neuberger,“ Vaccines for preventing typhoid fever”, Cochrane Database of Systematic Reviews 5 (2018) 5. https://doi.org/10.1002/14651858.CD001261.pub4.

Z. A. Bhutta, M. I. Khan, M. I. Soofi & R. L. Ochiai, “New advances in typhoid fever vaccination strategies”, in Hot Topics in Infection and Immunity in Children VII, Advances in Experimental Medicine and Biology, vol. 697, Springer, New York, NY, 2011, pp. 17-39. https://doi.org/10.1007/978-1-4419-7185-2_3.

C. B Acosta-Alonzo, I. V. Erovenko, A. Lancaster, H. Oh, J. Rychtar & D. Taylor, “High endemic levels of typhoid fever in rural areas of Ghana may stem from optimal voluntary vaccination behaviour”, Proceedings of the Royal Society A 476 (2020) 20200354. https://doi.org/10.1098/rspa.2020.0354.

O. I. Idisi, T. T. Yusuf, E. Adeniyi, A. A. Onifade, Y. T. Oyebo, A. T. Samuel & L. A. Kareem, “A new compartmentalized epidemic model to analytically study the impact of awareness on the control and mitigation of the monkeypox disease”, Healthcare Analytics 4 (2023) 100267. https://doi.org/10.1016/j.health.2023.100267.

A. Abidemi & O. J. Peter, “Host-vector dynamics of dengue with asymptomatic, isolation and vigilant compartments: insights from modelling”, The European Physical Journal Plus, 138 (2023) 199. https://doi.org/10.1140/epjp/s13360-023-03823-7.

O. J. Peter, S. Panigoro, A. Abidemi, M. Ojo & F. A. Oguntolu,“ Mathematical model of covid-19 pandemic with double dose vaccination”, Acta biotheoretica 71 (2023) 9. https://doi.org/10.1007/s10441-023-09460-y.

A. O. Sangotola, S. B. Adeyemo, O. A. Nuga, A. E. Adeniji & A. J. Adigun, “A tuberculosis model with three infected classes”, Journal of the Nigerian Society of Physical Sciences 6 (2024) 1881. https://doi.org/10.46481/jnsps.2024.1881.

S. Ajao, I. Olopade, T. Akinwumi, S. Adewale & A. Adesanya, “Understanding the transmission dynamics and control of hiv infection: A mathematical model approach”, Journal of the Nigerian Society of Physical Sciences, pages 5 (2023) 1389. https://doi.org/10.46481/jnsps.2023.1389.

E .C. Duru, G. C. E. Mbah, M. C. Anyanwu & N. T. Nnamani, “ Modelling the co-infection of malaria and zika virus disease”, Journal of the Nigerian Society of Physical Sciences 6 (2024) 1938. https://doi.org/10.46481/jnsps.2024.1938.

A. O. Yunus and M. O. Olayiwola, “The analysis of a novel covid-19 model with the fractional-order incorporating the impact of the vaccination campaign in nigeria via the laplace-adomian decomposition method’, Journal of the Nigerian Society of Physical Sciences 6 (2024) 1830. https://doi.org/0.46481/jnsps.2024.1830.

B. Bolaji, A. Ibrahim, F. Ani, B. Omede & G. Acheneje, “A model for the control of transmission dynamics of human monkeypox disease in sub-saharan africa”, Journal of the Nigerian Society of Physical Sciences 6 (2024) 1800. https://doi.org/10.46481/jnsps.2024.1800.

T. K. Irena & S. Gakkhar, “Optimal control of two-strain typhoid transmission using treatment and proper hygiene/sanitation practices”, Journal of Computational Analysis and Applications 30 (2022) 355. http://www.eudoxuspress.com/index.php/pub/article/view/121.

H. Abboubakar & R. Racke, “Mathematical modeling, forecasting & optimal control of typhoid fever transmission dynamics”, Chaos, Solitons and Fractals 149 (2021) 111074. https://doi.org/10.1016/j.chaos.2021.111074.

L. S Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze & E. F. Mishchenko, The mathematical theory of optimal processes, John Wiley & Sons, New York, 1962. https://doi.org/10.1002/zamm.19630431023.

L. S. Pontryagin, “Mathematical theory of optimal processes”, Routledge, London, 2018. https://doi.org/10.1201/9780203749319.

S. Lenhart and J. T. Workman, Optimal control applied to biological models, CRC press, New York, 2007. https://doi.org/10.1201/9781420011418.

A. Alhassan, A. A. Momoh, S. A. Abdullahi & A. Audu, “Mathematical model for the transmission dynamics of typhoid fever infection with treatment”, International Journal of Science for Global Sustainability 7 (2021) 13. https://fugus-ijsgs.com.ng/index.php/ijsgs/article/view/25.

National Population Comission worldometer, “Current population of Nigeria”. [Online]. http://nationalpopulation.gov.ng. Retrieved November 18th 2022.

Ibrahim M. O. Edogbanya H. O. Oguntolu F. A. Oshinubi K. Ibrahim A. A Peter, O. J., T. A, Ayoola & J. O Lawal, “Direct and indirect transmission of typhoid fever model with optimal control”, Results in Physics 27 (2021) 104463. https://doi.org/10.1016/j.rinp.2021.104463.

S. Olaniyi, O. D. Falowo, K. O. Okosun, M. Mukamuri, O. S. Obabiyi & O. A. Adepoju, “Effect of saturated treatment on malaria spread with optimal intervention”, Alexandria Engineering Journal 65 (2023) 443. https://doi.org/10.1016/j.aej.2022.09.024.

T. T. Yusuf and A. Abidemi, “Effective strategies towards eradicating the tuberculosis epidemic: An optimal control theory alternative”, Healthcare Analytics 3 (2023) 100131. https://doi.org/10.1016/j.health.2022.100131.

Published

2024-09-27

How to Cite

On mathematical modelling of optimal control of typhoid fever with efficiency analysis. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2057. https://doi.org/10.46481/jnsps.2024.2057

Issue

Section

Mathematics & Statistics

How to Cite

On mathematical modelling of optimal control of typhoid fever with efficiency analysis. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2057. https://doi.org/10.46481/jnsps.2024.2057