Investigation of the behaviour of tunable chalcogenide-Bismuth based perovskite BiTl (SxSe1-x)3(X = 0, 0.33, 0.67, 1): first principles calculations

Authors

  • Muteeu A. Olopade Department of Physics, University of Lagos, Nigeria
  • Anthony B. Adegboyega Department of Physics, University of Lagos, Nigeria
  • Kayode I. Ogungbemi Department of Physics, University of Lagos, Nigeria
  • Adeyinka D. Adewoyin Physics Unit, Distance Learning Institute, University of Lagos, Nigeria

Keywords:

Chalcogenide based perovskite, Electro-optical properties, Optoelectronics, Thermal sensor, Photovoltaic

Abstract

Density functional theory (DFT) driven by the quantum ESPRESSO code was used in this study to investigate the structural, opto-electronic, and thermoelectric properties of ternary perovskite chalcogenide compound. This is to examine their possible use in optoelectronics and reducing the dependency on silicon and fossil fuel. The Perovskite compounds crystalize in the cubic phase with a space group Pm-3m. The volume versus energy is fitted by the Birch-Murnaghan equation of state which yielded the equilibrium lattice constant of 8.353, 8.488, 8.629 and 8.806, bulk modulus of 255.8, 242.7, 233.5 and 222.4, for BiTlS3 , BiTlS2 Se1 , BiTlS1 Se2 and BiTlSe3 . Indirect band gaps of 2.6 eV, 2.7 eV, 2.9 eV, and 3.2 eV were obtained for BiTlS3 , BiTlS2 Se1 , BiTlS1 Se2 and BiTlSe3 compounds, respectively. Also, increment in the energy from 0 eV to 10 eV resulted in optical properties fluctuation within 0 cm-1 to 1.5 × 109 cm-1 for absorption coefficient in the compounds. However, a variation from 10 eV to 20 eV moved the absorption coefficient to 4.2 × 109 cm-1 for all the compounds from visible to the UV range. Furthermore, the observed properties show that the value of figure of merit obtained is 0.125 for BiTlS3 , 0.100 for BiTlS2 Se1 , 0.068 for BiTlS1 Se2 and 0.055 for BiTlSe3 at 300 K. By adjusting the chalcogen ratio, BiTlX3 (X = S, Se) possess the tunable band gap in the whole visible light range, which is of great significance for the development of new-type, high-efficient semiconductor material and optoelectronic devices, while the low thermoelectric values predict the compounds use as sensors. The proposed results may pave the way for further investigations into the use of the perovskite compounds for optoelectronic devices.

Dimensions

A. B. Adegboyega, M. A. Olopade, K. I. Ogungbemi & R. O. Balogun, “Electro-optical and thermoelectric properties of perovskite CsKAgBiX6 (X = Cl,Br,I): A DFT study”, Computational Condensed Matter 38 (2024) e00878. https://doi.org/10.1016/j.cocom.2023.e00878.

X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt & M. Gratzel, “A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells”, Science 353 (2016) 58. https://doi.org/10.1126/science.aaf8060.

L. Ma, J. Dai & X. C. Zeng, “Two-Dimensional Single-Layer Organic-Inorganic Hybrid Perovskite Semi-conductors”, Advanced Energy Materials 7 (2017) 1601731. https://doi.org/10.1002/aenm.201601731.

D. Nason & L. Keller, “The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport”, J. Cryst. Growth 156 (1995) 221. https://doi.org/10.1016/0022-0248(95)00291-X.

P. Ranjan, P. Kumar, T. Chakraborty, M. Sharma & S. Sharma, “A study of structure and electronic properties of chalcopyrites semiconductor invoking Density Functional theory”, Mater. Chem. Phys. 241 (2020) 122346. https://doi.org/10.1016/j.matchemphys.2019.122346.

G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqsood, I. Khan & M. Zahid, “Investigation of structural and optoelectronic properties of BaThO3”, Optical Materials 33 (2011) 553. https://doi.org/10.1016/j.optmat.2010.10.052.

S. Moskvin, A. A. Makhnev, L. V. Nomerovannaya, N. N. Loshkareva & A. M. Balbashov, “Interplay of p-d and d-d charge transfer transitions in rare-earth perovskite manganites”, Physical Review B-Condensed Matter and Materials Physics 82 (2010) 035106. https://doi.org/10.1103/PhysRevB.82.035106.

C. Weeks & M. Franz, “Topological insulators on the Lieb and perovskite lattices”, Physical Review B—Condensed Matter and Materials Physics 82 (2010). 085310. https://doi.org/10.1103/PhysRevB.82.085310.

A. Voloshynovskii, P. Savchyn, I. Karbovnyk, S. Myagkota, M. C. Guidi, M. Piccinini & A. I. Popov, “CsPbCl3 nanocrystals dispersed in the Rb0, 8Cs0, 2Cl matrix studied by far-infrared spectroscopy”, Solid State Communications 149 (2009) 593. https://doi.org/10.1016/j.ssc.2009.01.032.

Y. Zhou, J. Chen, O. M. Bakr & O. F. Mohammed, “Metal halide perovskites for X-ray imaging scintillators and detectors”, ACS energy letters 6 (2021) 739. https://doi.org/10.1021/acsenergylett.0c02430.

J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao & X. Yi, “All-inorganic perovskite solar cells”, J. Am. Chem. Soc. 138 (2016) 15829. https://doi.org/10.1021/jacs.6b10227.

Q. Tai, K. C. Tang & F. Yan, “Recent progress of inorganic perovskite solar cells”, Energy Environ. Sci. 12 (2019) 2375. https://doi.org/10.1039/C9EE01479A.

J. Yang, C. Bao, W. Ning, B. Wu, F. Ji, Z. Yan, Y. Tao, J. M. Liu, T. C. Sum & S. Bai, “Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2 AgBiBr6 double perovskite films”, Adv. Opt. Mater. 7 (2019) 1801732. https://doi.org/10.1002/adom.201801732.

A. H. Slavney, T. Hu, A. M. Lindenberg & H. I. Karunadasa, “A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications”, J. Am. Chem. Soc. 138 (2016) 2138.https://doi.org/10.1021/jacs.5b13294.

M. Ju, J. Dai, L. Ma & X. C. Zeng, “Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices”, Adv. Energy Mater. 7 (2017) 1700216. https://doi.org/10.1002/aenm.201700216.

W. Meng, B. Saparov, F. Hong, J. Wang, D. B. Mitzi, Y. Yan, W. Meng, B. Saparov, F. Hong, J. Wang, D. B. Mitzi & Y. Yan, “Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application”, Chemistry of Materials 28 (2016) 821. https://doi.org/10.1021/acs.chemmater.5b04213.

S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D. F. Watson, B. Weinstein, Y. Y. Sun, S. Zhang & H. Zeng, “Chalcogenide perovskites–an emerging class of ionic semiconductors”, Nano Energy 22 (2016) 129. https://doi.org/10.1016/j.nanoen.2016.02.020.

Y. Y. Sun, M. L. Agiorgousis, P. Zhang & S. Zhang, “Chalcogenide perovskites for photovoltaics”, Nano Lett. 15 (2015) 581. https://doi.org/10.1021/nl504046x.

S. Al-Qaisi, A.M. Mebed, M. Mushtaq, D. P. Rai, T. A. Alrebdi, R. A. Sheikh, H. Rached, R. Ahmed, M. Faizan, S. Bouzgarrou & M. A. Javed, “A theoretical investigation of the lead-free double perovskites halides Rb2 XCl6 (X = Se, Ti) for optoelectronic and thermoelectric applications”, J. Comput. Chem. 44 (2023) 1690. https://doi.org/10.1002/jcc.27119.

S. Al-Qaisi, Q. Mahmood, N. A. Kattan, S. Alhassan, T. Alshahrani, N. Sfina, S. Brini, A. Hakamy, A. Mera & M. A. Amin, “Tuning of band gap by variation of halide ions in K2 CuSbX6 (X = Cl, Br, I) for solar cells and thermoelectric applications”, J. Phys. Chem. Solid 174 (2023) 111184. https://doi.org/10.1016/j.jpcs.2022.111184.

S. Al-Qaisi, H. Rached, T. A. Alrebdi, S. Bouzgarrou, D. Behera, S.K. Mukherjee, M. Khuili, M. Adam, A. S. Verma & M. Ezzeldien, “Study of mechanical, optical, and thermoelectric characteristics of Ba2 XMoO6 (X = Zn, Cd) double perovskite for energy harvesting, J. Comput. Chem. 44 (2023) 2442. https://doi.org/10.1002/jcc.27209.

M. A. Ali, M. Musa Saad H. E., A. M. Tighezza, S. Khattak, S. Al-Qaisi & M. Faizan, “First-principles calculations of novel lead-free X2 GeSnI6 (X=Rb, Cs) double perovskite compounds for optoelectronic and energy exploitations”, Journal of Inorganic and Organometallic Polymers and Materials 34 (2024) 1. http://dx.doi.org/10.1007/s10904-023-02901-8.

A. M. Mebed, M. Mushtaq, I. Muhammad, I. N. Lone, S. AL-Qaisi, N. Algethami, E. F. EL-Shamy, A. Laref & N. M. AL-Hosiny, “Structure, half-metallic and magnetic properties of bulk and (001) surface of Rb2 XMoO6 (X = Cr, Sc) double perovskites: a DFT + U study”, Phys. Scripta 98 (2023) 015807. https://doi.org/10.1088/1402-4896/aca56b.

H. Albalawi, S. A. Rouf, T. Zelai, N. A. Kattan, S. Bouzgarrou, Q. Mahmood, S. AlQaisi & E. Yousef, “The study optical, thermoelectric, and thermodynamic properties of double perovskites K2 CuBiX6 (X = Cl, Br, I) for energy harvesting”, Mater. Sci. Eng. B 298 (2023) 116851. https://doi.org/10.1016/j.mseb.2023.116851.

K. Ephraim Babu, N. Murali, K. Vijaya Babu, P. Taddesse Shibeshi & V. Veeraiah, “Structural, elastic, electronic, and optical properties of cubic perovskite CsCaCl3 compound: an ab initio study”, Acta Phys. Pol. A 125 (2014) 1179. https://doi.org/10.12693/APhysPolA.125.1179.

Y. Fujimoto, M. Koshimizu, T. Yanagida, G. Okada, K. Saeki & K. Asai, “Thallium magnesium chloride: a high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X-ray and gamma-ray detection”, Jpn. J. Appl. Phys. 55 (2016) 090301. https://doi.org/10.7567/JJAP.55.090301.

Z. Wang, X. Xu, S. Wang, Hui Xu, Weiwei Xu, Q. Zeng, G. Deng, Y. Jiang & S. Wu, “Cerium doping double perovskite scintillator for sensitive X-ray detection and imaging”, Chem. Eur. J. 27 (2021) 9071. https://doi.org/10.1002/chem.202100449.

J. A. Steele, W. Pan, C. Martin, M. Keshavarz, E. Debroye, H. Yuan, S. Banerjee, E. Fron, D. Jonckheere, C. W. Kim, W. Baekelant, G. Niu, J. Tang, J. Vanacken, M. V. Auweraer, J. Hofkens & M. B. J. Roeffaers, “Photophysical pathways in highly sensitive Cs2 AgBiBr6 double-perovskite single-crystal X-ray detectors”, Adv. Mater. 30 (2018) 1804450. https://doi.org/10.1002/adma.201804450.

A. Zaghrane, H. Ouhenou, E. M. Agouri, A. Abbassi, Y. Mekaoui, S. Taj & B. Manaut, “First-principles investigation of structural, electronic, optical, and magnetic properties of a scintillating double perovskite halides (Cs2 LiCeX6 ) with (X = F, Br, and I)”, Chin. J. Phys 90 (2023) 111. https://doi.org/10.1016/j.cjph.2023.08.001.

Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D. J. Singh & R. Kapadia, “Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides”, Adv. Mater. 29 1604733 (2016). https://doi.org/10.1002/adma.201604733.

L.J. Sham & W. Kohn, “One-particle properties of an inhomogeneous interacting electron gas”, Phys. Rev. 145 (1966) 561. https://doi.org/10.1103/PhysRev.145.561.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni & I. Dabo, “Quantum espresso: a modular and open-source software project for quantum simulations of materials”, J. Phys. Condens. Matter 21 (2009) 395502. https://iopscience.iop.org/article/10.1088/0953-8984/21/39/395502.

J. P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.

G. K. H. Madsen & D. J. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities”, Comput. Phys. Commun. 175 (2006) 67. https://doi.org/10.1016/j.cpc.2006.03.007.

K. Anton, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale”, Computational Materials Science 28 (2003) 155. https://doi.org/10.1016/S0927-0256(03)00104-6.

S. Bouhmaidi, A. Azouaoui, N. Benzakour, A. Hourmatallah & L. Setti, “First-principles calculations on structural, electronic, elastic, optical and thermoelectric properties of thallium based chloroperovskites TlMCl3 (M= Zn and Cd)”, Computational Condensed Matter 33 (2022) e00756. https://doi.org/10.1016/j.cocom.2022.e00756.

Hnamte, Lalhriatpuia, Himanshu Joshi & R. K. Thapa, “Electronic and optical properties of double Perovskite oxide Pb2 ScSbO6 : a first principles approach”, IOSR J. Appl. Phys. 10 (2018) 39. https://doi.org/10.9790/4861-1003023944.

C. Han, M. Li, B. Wang, S. Ming & J. Su, “Structure, electronic and optical properties of CsPbX3 halide perovskite: a first-principles study”, Journal of Alloys and Compounds 862 (2021) 158442. https://doi.org/10.1016/j.jallcom.2020.158442.

G. Rooh, H. J. Kim & S. Kim, “Study on crystal growth and scintillation characteristics of Cs2 LiCeCl6 , IEEE Trans. Nucl. Sci. 57 (2010) 1255e9. https://doi.org/10.1109/TNS.2009.2037903.2.

P. R. Bennet, K. S. Shah, L. J. Cirignano, M. B. Klugerman, L. P. Moy & M. R. Squillante, “Characterization of polycrystalline TlBr films for radiographic detectors”, IEEE Trans. Nucl. Sci. 46 (1999) 266. https://doi.org/10.1109/23.775525.

A. Srivastava, P. Sarkar & S. K. Tripathy, “Structural, electronic and optical properties of Ag2 MgSn(S/Se)4 quaternary chalcogenides as solar cell absorber layer: an Ab-initio study”, Solar Energy 209 (2020) 206. https://doi.org/10.1016/j.solener.2020.08.094.

Y. Grabovsky & N. Hovsepyan, “On the feasibility of extrapolation of the complex electromagnetic permittivity function using Kramers--Kronig relations”, SIAM Journal on Mathematical Analysis 53 (2021) 6993. https://doi.org/10.1137/20M1369427.

B. Gralak, M. Lequime, M. Zerrad & C. Amra, “Phase retrieval of reflection and transmission coefficients from Kramers–Kronig relations”, JOSA A 32 (2015) 456. https://doi.org/10.1364/JOSAA.32.000456.

D. R. Penn, “Wave-number-dependent dielectric function of semiconductors”, Phys. Rev. 128 (1962) 2093. https://doi.org/10.1103/PhysRev.128.2093.

P. Sharma & S. C. Katyal, “Determination of optical parameters of a-(As2Se3) 90Ge10 thin film”, Journal of Physics D: Applied Physics 40 (2007) 2115. https://doi.org/10.1088/0022-3727/40/7/038.

E. W. Van Stryland & D. R. Williams, Handbook of optics, Vol. 2, McGraw-Hill, New York, 1995, pp. 33-66. https://doi.org/10.1036/0071414789.

S. Bouhmaidi, A. Marjaoui, A. Talbi, M. Zanouni, K. Nouneh & L. Setti, “A DFT study of electronic, optical and thermoelectric properties of Ge-halide perovskites CsGeX3 (X=F, Cl and Br)”, Computational Condensed Matter 31 (2022) e00663. https://doi.org/10.1016/j.cocom.2022.e00663.

M. Rizwan, H. M. N. Ullah, S. S. Ali, U. Hira, H. Naeem & Z. Usman, “Quantum mechanical investigation of the structural stability, pressure-induced thermoelectric response, electronic and optical behaviour of SrZrO3 under extreme conditions. (2023). [Online]. https://doi.org/10.21203/rs.3.rs-3083894/v1.

Jonson, M. & G. D. Mahan, “Mott’s formula for the thermopower and the Wiedemann-Franz law”, Physical Review B 21 (1980) 4223. https://doi.org/10.1103/PhysRevB.21.4223.

Babalola, M. I., B. E. Iyorzor & S. O. Ebuwa. ”First principles calculation of half metallic proprieties of QCrAs (Q= Hf, Ti and Zr)”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1029. https://doi.org/10.46481/jnsps.2023.1029.

Published

2025-02-01

How to Cite

Investigation of the behaviour of tunable chalcogenide-Bismuth based perovskite BiTl (SxSe1-x)3(X = 0, 0.33, 0.67, 1): first principles calculations. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2259. https://doi.org/10.46481/jnsps.2025.2259

Issue

Section

Physics & Astronomy

How to Cite

Investigation of the behaviour of tunable chalcogenide-Bismuth based perovskite BiTl (SxSe1-x)3(X = 0, 0.33, 0.67, 1): first principles calculations. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2259. https://doi.org/10.46481/jnsps.2025.2259