Variation, distribution and trends of aerosol optical properties in Africa during 2000-2022

Authors

  • Aladodo Sarafadeen Shehu NASRDA, Centre for Atmospheric Research, Anyigba, Nigeria https://orcid.org/0000-0003-2018-9958
  • Ibrahim Bolaji Balogun Department of Science Laboratory Technology (Physics/Electronics), Kwara State Polytechnique, Nigeria
  • Ibrahim Yakubu Tudunwada NASRDA, Centre for Atmospheric Research, Anyigba, Nigeria

Keywords:

Aerosol properties, Trend, AOD, Climate

Abstract

Global anthropogenic emissions have been on the increase causing environmental and climatic concerns. To this end, aerosol properties influenced by these anthropogenic activities from satellite and ground remote sensing were examined for distribution, variation, and trends over Africa during 2000–2022. Furthermore, the response of temperature to the interaction of aerosols with solar radiation was investigated in the region. The spatial distribution of the aerosol properties were characterized as high (towards maximum values), moderate (around middle values), and low (towards least values) which varied with time and local emissions dependence. In addition, trends in Aerosol Optical Depth (AOD) show a significant decrease in the arid areas of the northern and southern regions, while an increase in the arid Sahel and central Africa. Angstrom Exponent (AE) is on a decreasing trend as well as Absorption Aerosol Optical Depth (AAOD), except for southern central Africa, which has a significant positive trend of AAOD attributed to intense bush burning. A dust hotspot in the central Sahara and central South Africa smoke experienced positive and neutral trends in Single Scattering Albedo (SSA) respectively indicating an increase in scattering aerosol (pure dust) and a uniform level of smoke emission in the areas, with other areas negatively trending. A strong relationship exists between air temperature with AOD, AAOD, and SSA and negative ones with AE based on the level of aerosol composition and types. The study forms the basis for climate change impact study in  Africa region.

Dimensions

[1] IPCC, “Summary for policymakers”, in Climate change 2021: The physical science basis, contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change, V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Pean, S.´ Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekc¸i, R. Yu & B. Zhou (Ed.), Sixth Repo, Swizerland, 2021, pp. 3–216. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SummaryVolume.pdf.

[2] V. Ramanathan, “Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian Haze”, Journal of Geophysical Research 106 (2001) 28371. https://doi.org/10.1029/2001JD900133.

[3] J. Huang, C. Zhang & J. M. Prospero, “Large-scale effect of aerosols on precipitation in the West African Monsoon region”, Q. J. R. Meteorol. Soc. 135 (2009) 581. https://doi.org/doi:10.1002/qj.391.

[4] D. M. Giles, B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson & J. S. Schafer, “An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions”, Journal of Geophysical Research: Atmospheres 117 (2012) 1. https://doi.org/10.1029/2012JD018127.

[5] S. Bibi, K. Alam, F. Chishtie & H. Bibi, “Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment”, Atmospheric Environment 150 (2017) 126. https://doi.org/10.1016/J.ATMOSENV.2016.11.052.

[6] S. S. Aladodo, C. O. Akoshile, T. B. Ajibola, M. Sani, O. A. Iborida & A. A. Fakoya, “Seasonal tropospheric aerosol classification using aeronet spectral absorption properties in African locations”, Aerosol Science and Engineering 6 (2022) 246. https://doi.org/10.1007/s41810-022-00140-x.

[7] IPCC, “Cimate change 2013: The physical science basis:Working group I contribution to the fifth assessment report of the IPCC”, [Online], 2013. https://www.ipcc.ch/report/ar5/wg1/.

[8] J. M. Prospero, W. M. Landing & M. Schulz, “African dust deposition to Florida: Temporal and spatial variability and comparisons to models”, Journal of Geophysical Research: Atmospheres 115 (2010) D13304.

https://doi.org/10.1029/2009JD012773.

[9] O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre & I. Slutsker, “Variability of absorption and optical´ properties of key aerosol types observed in worldwide locations”, Journal of the Atmospheric Science 59 (2002) 590. http://dx.doi.org/10.1175/1520-0469(2002)059%3C0590:VOAAOP%3E2.0.CO;2.

[10] A. Angstrom, “The parameters of atmospheric turbidity”, Willey 16 (1964) 64. https://doi.org/10.1111/j.2153-3490.1964.tb00144.x.

[11] A. Matzarakis & B. Amelung, “Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans”, in Seasonal Forecasts, Climatic Change and Human Health, M.C. Thomson, (Ed.), Springer, Dordrecht, Netherlands, 2008, pp. 161–172. https://doi.org/10.1007/978-1-4020-6877-5_10.

[12] R. C. Sullivan, R. C. Levy, A. M. Silva & S. C. Pryor “Developing and diagnosing climate change indicators of regional aerosol optical properties”, Scientific Reports 7 (2017) 1. https://doi.org/10.1038/s41598-017-18402-x.

[13] T. R. Karl, R. W. Knight, D. R. Easterling & R. G. Quayle, “Indices of climate change for the United States”, Bull. Am. Meteorol. Soc. 77 (1996) 279. https://doi.org/10.1175/1520-0477(1996)077%3C0279:IOCCFT%3E2.0.CO;2.

[14] J. M. Melillo, T. T. Richmond & G. Yohe, “Climate change impacts in the United States: Third National Climate Assessment”, US Global Change Research Program, Washington, D.C, United State, 2014, pp. 234–267. https://doi.org/10.7930/J0Z31WJ2.

[15] B. Marticorena, J. Haywood, H. Coe, P. Formenti, C. Liousse, M. Mallet & J. Pelon, “Tropospheric aerosols over West Africa : highlights from the AMMA international program”, Atmospheric Science Letter 12 (2011) 19. https://doi.org/10.1002/asl.322.

[16] J. M. Haywood, J. Pelon, P. Formenti, N. A. Bharmal, M. E. Brooks, G. Capes, P. Chazette, C. Chou, S. A. Christopher, H. Coe, J. Cuesta, Y. Derimian, K. Desboeufs, G. Greed, M. Harrison, B. Heese, E. J. Highwood, B. Johnson, M. Mallet, B. Marticorena, J. Marsham, S. Milton, G. Myhre, S. R. Osborne, D. J. Parker, J. L. Rajot, M. Schulz, A. Slingo, D. Tanre & P. Tulet, “Overview of the dust and biomass-burning exper-´ iment and African monsoon multidisciplinary analysis special observing period-0”, Journal of Geophysical Research Atmospheres 113 (2008) 1. https://doi.org/10.1029/2008JD010077.

[17] G. Capes, B. Johnson, G. Mcfiggans, P. I. Williams, J. Haywood & H. Coe, “Aging of biomass burning aerosols over West Africa : Aircraft measurements of chemical composition , microphysical properties, and emission ratios”, Journal of Geophysical Research 113 (2008) 1. https://doi.org/10.1029/2008JD009845.

[18] K. E. Ukhurebor, S. O. Azi, U. O. Aigbe, R. B. Onyancha & J. O. Emegha, “Analyzing the uncertainties between reanalysis meteorological data and ground measured meteorological data”, Measurement 165 (2020) 108110. http://dx.doi.org/10.1016/j.measurement.2020.108110.

[19] G. W. Khamala, J. W. Makokha, R. Boiyo & K. R. Kumar, “Long term climatology and spatial trends of absorption, scattering , and total aerosol optical depths over East Africa during 2001 – 2019”, Environmental Science and Pollution Research 29 (2022) 61283. https://doi.org/10.1007/s11356-022-20022-6.

[20] X. Yu, J. Nichol, K. H. Lee, J. Li & M. S. Wong, “Analysis of longterm aerosol optical properties combining AERONET sunphotometer and satellite-based observations in Hong Kong”, Remote Sens. 14 (2022) 5220. https://doi.org/10.3390/rs14205220.

[21] Z. Y. Zhang, M. S. Wong & J. Nichol, “Global trends of aerosol optical thickness using the ensemble empirical mode decomposition method”, Int. J. Climatol. 36 (2016) 4358. http://dx.doi.org/10.1002/joc.4637.

[22] S. Ramachandran & M. Rupakheti, “Trends in the types and absorption characteristics of ambient aerosols over the Indo-Gangetic Plain and North China Plain in last two decades”, Sci. Total Environ. 831 (2022) 154867. https://doi.org/10.1016/j.scitotenv.2022.154867.

[23] R. K. Boiyo, R. Kumar & T. Zhao, “Spatial variations and trends in AOD climatology over East Africa during 2002–2016: a comparative study using three satellite data sets”, Int J Climatol 38 (2018) e1221. https://doi.org/10.1002/joc.5446.

[24] M. Aklesso, R. K. Kumar, L. Bua & R. Boiyo, “Analysis of spatial- temporal heterogeneity in remotely sensed aerosol properties observed during 2005–2015 over three countries along the Gulf of Guinea Coast in Southern West Africa”, Atmos Environ 182 (2018) 313. http://dx.doi.org/10.1016/j.atmosenv.2018.03.062.

[25] K. R. Kumar, N. Kang, V. Sivakumar & D. Griffith, “Temporal characteristics of columnar aerosol optical properties and radiative forcing (2011-2015) measured at AERONET’s Pretoria CSIR DPSS site in South Africa”, Atmos Environ 165 (2017) 274. https://doi.org/10.1016/j.atmosenv.2017.06.048.

[26] R. Singh, V. Singh, A. Sagar, G. Sneha, G. Manish, S. Pushpendra & S. Soni, “Temporal and spatial variations of satellite based aerosol optical depths , angstrom exponent , single scattering albedo , and ultraviolet aerosol index over five polluted and less polluted cities of Northern India : Impact of urbanization and clima”, Aerosol Science and Engineering 7 (2022) 131. https://doi.org/10.1007/s41810-022-00168-z.

[27] O. A. Falaiye, T. O. Aro & E. B. Babatunde, “Interannual variation of ambient aerosol optical depth at Ilorin a central state of Nigeria”, Zuma Journ of Pure and Appl. Sci 5 (2003) 197. https://doi.org/10.1007/s41810-022-00168-z.

[28] G. Snider, C. L. Weagle, K. K. Murdymootoo, A. Ring, Y. Ritchie, E. Stone, A. Walsh, C. Akoshile, N. X. Anh, R. Balasubramanian, J. Brook, F. D. Qonitan, J. Dong, D. Griffith, K. He, B. N. Holben, R. Kahn & N. Lagrosas, “Variation in global chemical composition of PM 2 . 5 : emerging results from SPARTAN”, Atmos. Chem. Phys. 16 (2016) 9629. https://doi.org/10.5194/acp-16-9629-2016.

[29] K. D. Perry, T. A. Cahill, R. A. Eldred, D. D. Dutcher & T. E. Gill, “Longrange transport of North African Dust to the eastern United States”, Journal of Geophysical Research-Atmospheres 102 (1997) 11225. https://doi.org/10.1023/A:1005277214288.

[30] C. L. Mcconnell, Aircraft Measurements of Saharan Mineral Dust, University of Reading, Reading, UK, 2009. https://www.met.reading.ac.uk/~jp902366/research/Claire_McConnell_thesis_090601.pdf.

[31] R. Boiyo, K. R. Kumar, T. Zhao & Y. Bao, “Climatological analysis of aerosol optical properties over East Africa observed from space-borne sensors during 2001 – 2015”, Atmospheric Environment 152 (2016) 298. https://doi.org/10.1016/j.atmosenv.2016.12.050.

[32] J. Janowiak, “An Investigation into interannual rainfall variability in Africa”, Journal of Climate 1 (1988) 240. https://www.jstor.org/stable/44363714.

[33] B. N. Holben, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, O. Dubovik & U. S. T. De Lille, AERONET ’ s Version 2 . 0 quality assurance criteria”, the International Society for Optical Engineering 6408 (2006) 1. http://dx.doi.org/10.1117/12.706524.

[34] A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik & I. Slutsker, “Cloud screening and quality control algorithms for the aeronet database”, Remote Sensing of Environment 73 (2000) 337. https://doi.org/10.1016/S0034-4257(00)00109-7.

[35] O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der˜ Zande, J. F. Leon, M. Sorokin & I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust”, Journal of Geophysical Research Atmospheres 111 (2006) 1. https://doi.org/10.1029/2005JD006619.

[36] O. Dubovik & D. M. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements”, Journal of Geophysical Research Atmospheres 105 (2000) 20673. https://doi.org/10.1029/2000JD900282.

[37] D. M. Giles, A. Sinyuk, M. G. Sorokin, J. S. Schafer, A. Smirnov, I. Slutsker, T. F. Eck, B. N. Holben, J. R. Lewis, J. R. Campbell, E. J. Welton, S. V. Korkin & A. I. Lyapustin, “Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - Automated near-realtime quality control algorithm with improved cloud screening for Sunphotometer aerosol optical depth (AOD) measurements”, Atmos. Meas. Tech. 12 (2019) 169. https://doi.org/10.5194/amt-12-169-2019.

[38] A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J. Roger, T. Lapyonok & I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data”, Remote Sensing of Environment 107 (2007) 90. https://doi.org/10.1016/j.rse.2006.07.022.

[39] A. M. Sayer, N. C. Hsu, C. Bettenhausen & M. Jeong, “Validation and uncertainty estimates for MODIS Collection 6 Deep Blue, aerosol data”, Journal of Geophysical Research: Atmospheres 118 (2013) 7864. https://doi.org/10.1002/jgrd.50600.

[40] Y. J. Kaufman, D. Tanre, H. R. Gordon, T. Nakajima, J. Lenoble, R.´ Frouin, H. Grassl, B. M. Herman, M. D. King & P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect”, Journal of Geophysical Research: Atmospheres 102 (1997) 16815. https://doi.org/10.1029/97JD01496.

[41] D. Tanre, Y. J. Kaufman, M. Herman & S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances”, J. Geophys. Res 102 (1997) 16971. http://dx.doi.org/10.1029/96JD03437.

[42] N. C. Hsu, M. J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang & S. C. Tsay, “Enhanced Deep Blue aerosol retrieval algorithm: The second generation”, Journal of Geophysical Research Atmospheres 118 (2013) 9296. https://doi.org/10.1002/jgrd.50712.

[43] R. C. Levy, S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia & N. C. Hsu, “The Collection 6 MODIS aerosol products over land and ocean”, Atmos. Meas. Tech 6 (2013) 2989. https://doi.org/10.5194/amt-6-2989-2013.

[44] O. Torres, P. K. Bhartia, H. Jethva & C. Ahn, “Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products”, Atmos Meas Tech 11 (2018) 2701. https://doi.org/10.5194/amt-11-2701-2018.

[45] A. J. Adesina, K. R. Kumar, V. Sivakumar & S. J. Piketh, “Intercomparison and assessment of long-term (2004–2013) multiple satellite aerosol products over two contrasting sites in South Africa”, J Atmos Sol Terr Phys 148 (2016) 82. http://dx.doi.org/10.1016/j.jastp.2016.09.001.

[46] B. N. Duncan, Y. Yoshida, B. De Foy, L. N. Lamsal, D. G. Streets, Z. Lu, K. E. Pickering & N. A. Krotkov, “The observed response of Ozone Monitoring Instrument ( OMI ) NO 2 columns to NO x emission controls on power plants in the United States : 2005 to 2011”, Atmospheric Environment 81 (2013) 102. https://doi.org/10.1016/j.atmosenv.2013.08.068.

[47] B. N. Duncan, A. I. Prados, L. N. Lamsal, Y. Liu, D. G. Streets, P. Gupta, E. Hilsenrath, R. A. Kahn, J. E. Nielsen, A. J. Beyersdorf, S. P. Burton, A. M. Fiore, J. Fishman, D. K. Henze, C. A. Hostetler, N. A. Krotkov, P. Lee, M. Lin, S. Pawson, P. Gabriele, K. E. Pickering, R. B. Pierce, Y. Yoshida & L. D. Ziemba, “Satellite data of atmospheric pollution for U. S. air quality applications : Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid”, Atmospheric Environment 94 (2014) 647. https://doi.org/10.1016/j.atmosenv.2014.05.061.

[48] B. Onoz & M. Bayazit, “The power of statistical tests for trend detection”, Turkish Journal of Engineering and Environmental Sciences 27 (2003) 247. https://www.researchgate.net/publication/282061007_The_Power_of_Statistical_Tests_for_Trend_Detection.

[49] A. Longobardi & P. Villani, “Trend analysis of annual and seasonal rainfall time series in the Mediterranean area”, Int. J. Climatol 30 (2009) 1538. https://doi.org/10.1002/joc.2001.

[50] Q. He, C. Li, F. Geng, Y. Lei & Y. Li, “Study on Long-term aerosol distribution over the Land of East China Using MODIS Data”, Aerosol and Air Quality Research 12 (2012) 304. https://doi.org/10.4209/aaqr.2011.11.0200.

[51] T. F. Eck, B. N. Holben, A. Sinyuk, R. T. Pinker, P. Goloub, H. Chen, B. Chatenet, Z. Li, R. P. Singh, S. N. Tripathi, J. S. Reid, D. M. Giles, O. Dubovik, N. T. O. Neill, A. Smirnov, P. Wang & X. Xia, “Climatological aspects of the optical properties of fine / coarse mode aerosol mixtures”, Journal of Geophysical Research 115 (2010) 1. https://doi.org/10.1029/2010JD014002.

[52] J. Lin, Y. Zheng, X. Shen, L. Xing & H. Che, “Global aerosol classification based on Aerosol Robotic Network ( AERONET ) and satellite observation”, Remote Sens. 13 (2021) 1114. https://doi.org/10.3390/rs13061114.

[53] S. S. Aladodo, C. O. Akoshile & J. O. Otu, “A Review of evidence of aerosol transmission of SARS-CoV-2 particles”, J. Nig. Soc. Phys. Sci. 3 (2021) 234. https://doi.org/10.46481/jnsps.2021.162.

[54] E. Jurado, F. M. Jaward & R. Simo, “Atmospheric dry deposition of persistent organic pollutants”, Remote Sensing of Environment 38 (2004) 5505. https://doi.org/10.1021/es049240v.

[55] W. Slinn, “Predictions for particle deposition to vegetative canopies”, Atmospheric Environment 16 (1988) 1785. https://doi.org/10.1016/0004-6981(82)90271-2.

[56] S.-W. Kim, P. Chazette, F. Dulac, J. Sanak, B. Johnson & S.-C. Yoon, “Transport and vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season”, Atmospheric Chemistry and Physics Discussions 9 (2009) 1831. https://doi.org/10.5194/acpd-9-1831-2009.

[57] I. Abubakar & O. I. Adesola, “Statistical and trend analyses of rainfall in Sokoto”, International Research Journal of Engineering Science, Technology and Innovation (IRJESTI) 1 (2012) 161. https://www.interesjournals.org/articles/statistical-and-trend-analyses-of-rainfall-in-sokoto.pdf.

[58] J. Rajot, “AMMA dust experiment: An overview of measurements during the dry season special observation period (SOP0) at Banizoumbou (Niger) supersite”, Journal of Geophysical Research 113 (2008) D23. https://doi.org/10.1029/2008JD009906.

[59] R. T. Pinker, H. Liu, S. R. Osborne & C. Akoshile, “Radiative effects of aerosols in Sub-Sahel Africa:Dust and Biomass burning”, Journal of Geophysical Research Atmospheres 115 (2010) n/a. https://doi.org/10.1029/2009JD013335.

[60] I. N. Sokolik & O. B. Toon, “Direct radiative forcing by anthropogenic airborne mineral aerosol”, Nature 381 (1996) 681. https://doi.org/10.1038/381681a0.

[61] P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez & J. M. Livingston, “Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition”, 10 (2010) 1155. https://doi.org/10.5194/acp-10-1155-2010.

[62] S. S. Aladodo, C. O. Akoshile, T. B. Ajibola, O. A. Falaiye & M. Sani, “Monitoring and estimation of aerosol and air pollutants relations using multi-sensor satellite and ground remote sensing over Ilorin a subsahel”, Monograph of Atmos. Res. 1 (2018) 24. https://carnasrda.com/wp-content/uploads/2019/06/Aladodo-et-al.pdf.

[63] R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen & D. J. Hofmann, “Climate forcing by anthropogenic aeroso”, Science 255 (1992) 423. https://doi.org/10.1126/science.255.5043.423.

Published

2025-05-01

How to Cite

Variation, distribution and trends of aerosol optical properties in Africa during 2000-2022. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2270. https://doi.org/10.46481/jnsps.2025.2270

Issue

Section

Earth Sciences

How to Cite

Variation, distribution and trends of aerosol optical properties in Africa during 2000-2022. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2270. https://doi.org/10.46481/jnsps.2025.2270