Green synthesis of CuO nanoparticles from Cucurbita maxima leaf extract; a platinum free counter electrode for dye sensitized solar cells

Authors

  • Emma Panzi Mukhokosi Department of Physics, Faculty of Science, Kyambogo University, PO Box 1, Kampala, Uganda
  • Stephen Tenywa Department of Physics, Faculty of Science, Kyambogo University, PO Box 1, Kampala, Uganda
  • Nandipha L. Bothab College of Graduate Studies, UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology, University of South Africa, Pretoria, South Africa Materials; Materials Research Department, Nanosciences African Network (NANOAFNET), iThemba LABS, PO Box 722, Cape Town, South Africa
  • Shohreh Azizi College of Graduate Studies, UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology, University of South Africa, Pretoria, South Africa Materials; Research Department, Nanosciences African Network (NANOAFNET), iThemba LABS, PO Box 722, Cape Town, South Africa
  • Mathapelo Pearl Seopela Department of Chemical Sciences, University of South Africa, Auckland Park Campus, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
  • Malik Maaza College of Graduate Studies, UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology, University of South Africa, Pretoria, South Africa; Materials Research Department, Nanosciences African Network (NANOAFNET), iThemba LABS, PO Box 722, Cape Town, South Africa

Keywords:

Green synthesis, DSSCs, CuO, Cucurbita maxima, Natural dye

Abstract

Green synthesis of metal oxides has attracted attention as the latest technology in synthesizing metal oxide nanoparticles due to its simplicity, cheapness, non-toxicity and its ability for large scale production. Metal oxides find applications in dye sensitized solar cells (DSSCs) as counter electrodes (CEs) and photo-anodes. However, applications of green synthesized metal oxides as counter electrodes have not been fully explored. In this study, CuO nanoparticles (NPs) were synthesized from Cucurbita maxima leaf extract and applied as a CE in DSSC. Uniformly synthesized CuO NPs were subjected to various characterization tools to obtain the crystal structure, surface morphology, particle size, optical properties, chemical bonds and photovoltaic properties. Using a natural dye from of Cucurbita maxima as a photon absorber, a short circuit current density ( Jsc) of 4.2 µA/cm2, open circuit voltage (Voc) of 0.17 V, a maximum power (Pmax) of 0.18 mW/cm2, and a power conversion efficiency (PCE) of 1.8 × 10?4 % under one-sun illumination were obtained.

Dimensions

A. Pueyo & M. Maestre, “Linking energy access, gender and poverty: A review of the literature on productive uses of energy”, Energy Research & Social Science 53 (2019) 170. https://doi.org/10.1016/j.erss.2019.02.019.

K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.I. Fujisawa & M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chemical communications 51 (2015) 15894. https://doi.org/10.1039/c5cc06759f.

S. A. Mahadik, H. M. Yadav & S. S. Mahadik, “Surface properties of chlorophyll-a sensitized TiO2 nanorods for dye-sensitized solar cells applications”, Colloid and Interface Science Communications 46 (2022) 100558. https://doi.org/10.1016/j.colcom.2021.100558.

K. Magiswaran, M. N. Norizan, N. Mahmed, I. S. Mohamad, S. N. Idris, M. F. M. Sabri, N. Amin, A. V. Sandu, P. Vizureanu, M. Nabia?ek & M. A. A. M. Salleh, “Controlling the Layer Thickness of Zinc Oxide Photoanode and the Dye-Soaking Time for an Optimal-Efficiency DyeSensitized Solar Cell”, Coatings 13 (2023) 20. https://doi.org/10.3390/coatings13010020.

V. M. Mwalukuku, J. Liotier, A. J. Riquelme, Y. Kervella, Q. Huaulme, A.´ Haurez, S. Narbey, J.A. Anta & R. Demadrille, “Strategies to improve the photochromic properties and photovoltaic performances of naphthopyran dyes in dye-sensitized solar cells”, Advanced Energy Materials 13 (2023) 2203651. https://doi.org/10.1002/aenm.202203651.

A. M. B. Leite, H. O. da Cunha, A. F. C. R. Rodrigues, R. Suresh Babu & A. L. F. de Barros, “Construction and characterization of organic photovoltaic cells sensitized by Chrysanthemum based natural dye”, Spectrochim. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 284 (2023) 121780. https://doi.org/10.1016/j.saa.2022.121780.

A. R. Tapa, W. Xiang & X. Zhao, “Metal chalcogenides (MxEy; E = S, Se, and Te) as counter Electrodes for dye–sensitized solar cells: An overview and guidelines”, Advanced Energy and Sustainability Research 10 (2021) 2100056. https://doi.org/10.1002/aesr.202100056.

C. Gao, Q. Han & M. Wu, “Review on transition metal compounds based counter electrode for dye-sensitized solar cells”, Journal of Energy Chemistry 27 (2018) 703. https://doi.org/10.1016/j.jechem.2017.09.003.

E. Singh, K. S. Kim, G. Y. Yeom & H.S. Nalwa, “Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells”, RSC Advances 7 (2017) 28234. https://doi.org/10.1039/c7ra03599c.

W. J. Lee, E. Ramasamy, D. Y. Lee & J. S. Song, “Performance variation of carbon counter electrode based dye-sensitized solar cell”, Solar Energy Materials and Solar Cells 92 (2008) 814. https://doi.org/10.1016/j.solmat.2007.12.012.

C. S. Wu, T. W. Chang, H. Teng & Y. L. Lee, “High performance carbon black counter electrodes for dye-sensitized solar cells”, Energy 115 (2016) 513. https://doi.org/10.1016/j.energy.2016.09.052.

X. Chen, J. Ding, Y. Li, Y. Wu, G. Zhuang, C. Zhang, Z. Zhang, C. Zhu & P. Yang, “Size-controllable synthesis of NiCoSe2 microspheres as a counter electrode for dye-sensitized solar cells”, RSC Advances 8 (2018) 26047. https://doi.org/10.1039/c8ra04091e.

R. Sankar Ganesh, K. Silambarasan, E. Durgadevi, M. Navaneethan, S. Ponnusamy, C. Y. Kong, C. Muthamizhchelvan, Y. Shimura & Y. Hayakawa, “Metal sulfide nanosheet–nitrogen-doped graphene hybrids as low-cost counter electrodes for dye-sensitized solar cells”, Applied Surface Science 480 (2019) 177. https://doi.org/10.1016/j.apsusc.2019.02.251.

S. Yun, L. Wang, W. Guo & T. Ma, “Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells”, Electrochemistry communications 24 (2012).3 https://doi.org/10.1016/j.elecom.2012.08.008.

J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie & Y. Wei, “Counter electrodes in dye-sensitized solar cells”, Chemical Society Reviews 46 (2017) 5975. https://doi.org/10.1039/c6cs00752j.

P. Jin, X. Zhang, M. Zhen & J. Wang, “MnO2 nanotubes with grapheneassistance as low-cost counter-electrode materials in dye-sensitized solar cells”, RSC Advances 6 (2016) 10938. https://doi.org/10.1039/c5ra26995d.

F. Du, Q. Yang, T. Qin & G. Li, “Morphology-controlled growth of NiCo2O4 ternary oxides and their application in dye-sensitized solar cells as counter electrodes”, Solar Energy 146 (2017) 125. https://doi.org/10.1016/j.solener.2017.02.025.

O. P. Keabadile, A. O. Aremu, S. E. Elugoke & O. E. Fayemi, “Green and traditional synthesis of copper oxide nanoparticles—comparative study”, Nanomaterials 10 (2020) 2502. https://doi.org/10.3390/nano10122502.

S. Saif, A. Tahir, T. Asim & Y. Chen, “Plant mediated green synthesis of CuO nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna”, Nanomaterials 6 (2016) 205. https://doi.org/10.3390/nano6110205.

V. Selvanathan, M. Aminuzzaman, L. H. Tey, S. A. Razali, K. Althubeiti, H. I. Alkhammash, S. K. Guha, S. Ogawa, A. Watanabe, M. Shahiduzzaman & M. Akhtaruzzaman, “Muntingia calabura leaves mediated green synthesis of cuo nanorods: Exploiting phytochemicals for unique morphology”, Materials 14 (2021) 6379. https://doi.org/10.3390/ma14216379.

S. L. Valan, A. E. De Cruz, P. J. Jacob & S. Djearamane, “Sustainable synthesis of copper oxide nanoparticles using Aquilaria malaccensis (Agarwood) leaf extract as reducing Agent”, International Journal of Technology 13 (2022) 1115. https://doi.org/10.14716/ijtech.v13i5.5845.

Y. Bin Chan, V. Selvanathan, L. H. Tey, M. Akhtaruzzaman, F. H. Anur, S. Djearamane, A. Watanabe & M. Aminuzzaman, “Effect of calcination temperature on structural, morphological and optical properties of copper oxide nanostructures derived from Garcinia mangostana L. leaf extract”, Nanomaterials 12 (2022) 3589. https://doi.org/10.3390/nano12203589.

H. E. A. Mohamed, T. Thema & M. S. Dhlamini, “Green synthesis of CuO nanoparticles via Hyphaene thebaica extract and their optical properties”, Materials Today : Proceedings 36 (2021) 591. https://doi.org/10.1016/j.matpr.2020.05.592.

D. S. Hanafiah, G. Rakasiwi, E. I. M. Ibrahim, A. A. Abdelbagi, M. Magdalena, A. Noerdin & D. J. Indrani, “Green synthesis, characterization and antimicrobial activity of CuO nanoparticles (NPs) derived from Hibiscus sabdariffa a plant and CuCl”, Journal of Physics: Conference Series“ 1963 (2021) 012092. https://doi.org/10.1088/1742-6596/1963/1/012092.

D. Das, B. C. Nath, P. Phukon & S. K. Dolui, “Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles”, Colloids and Surfaces B: Biointerfaces 101 (2013) 430. https://doi.org/10.1016/j.colsurfb.2012.07.002.

M. Gao, L. Sun, Z. Wang & Y. Zhao, “Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties”, Materials Science and Engineering:C 33 (2013) 397. https://doi.org/10.1016/j.msec.2012.09.005.

X. G. Zheng, C. N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada & Y. Soejima, “Observation of charge stripes in cupric oxide”, Physical Review Letters 85 (2000) 5170. https://doi.org/10.1103/PhysRevLett.85.5170.

H. R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh & H. Nagabhushana, “Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity”, Journal of Taibah University for Science 9 (2015) 7. https://doi.org/10.1016/j.jtusci.2014.04.006.

K. Velsankar, R. M. Aswin Kumara, R. Preethi, V. Muthulakshmi & S. Sudhahar, “Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities”, Journal of Environmental Chemical Engineering 8 (2020) 104123. https://doi.org/10.1016/j.jece.2020.104123.

H. N. Jayasimha, K.G. Chandrappa, P.F. Sanaulla & V.G. Dileepkumar, “Green synthesis of CuO nanoparticles: A promising material for photocatalysis and electrochemical sensor”, Sensors International 5 (2024) 100254. https://doi.org/10.1016/j.sintl.2023.100254.

S.A. Akintelu, A.S. Folorunso, F.A. Folorunso & A.K. Oyebamiji, “Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation“ , Heliyon 6 (2020) e04508. https://doi.org/10.1016/j.heliyon.2020.e04508.

V.V.T. Padil & M. Cern? ´?k, “Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application”, International Journal of Nanomedicine 88 (2013) 889. https://doi.org/10.2147/IJN.S40599.

S. Nouren, I. Bibi, A. Kausar, M. Sultan, H. Nawaz Bhatti, Y. Safa, S. Sadaf, N. Alwadai & M. Iqbal, “Green synthesis of CuO nanoparticles using Jasmin sambac extract: Conditions optimization and photocatalytic degradation of Methylene Blue dye”, Journal of King Saud UniversityScience 36 (2024) 103089. https://doi.org/10.1016/j.jksus.2024.103089.

Z. Alhalili, “Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus Globoulus leaf extract: Adsorption and design of experiments”, Arabian Journal of Chemistry 15 (2022) 103739. https://doi.org/10.1016/j.arabjc.2022.103739.

L. G. Prasad, R. Ravikumar, R. G. Raman & R. R. Kanna, “Investigations on the structural, vibrational, optical and photocatalytic behavior of CuO, MnO and CuMnO nanomaterials”, Journal of the Nigerian Society of Physical Sciences 6 (2024) 2137. https://doi.org/10.46481/jnsps.2024.2137.

J. K. Sharma, M. S. Akhtar, S. Ameen, P. Srivastava & G. Singh, “Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications”, Journal of Alloys and Compounds 632 (2015) 321. https://doi.org/10.1016/j.jallcom.2015.01.172.

B. H. Akpeji, B. Lari, U. A. Igbuku, G. Tesi, E. E. Elemike & P. O. Akusu, “Synthesis and characterization of MnO2 nanoparticles mediated by Raphia hookeri seed”, Journal of the Nigerian Society of Physical Sciences 6 (2024) 2203. https://doi.org/10.46481/jnsps.2024.2203.

P. P. N. V. Kumar, U. Shameem, P. Kollu, R. L. Kalyani & S. V. N. Pammi, “Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens”, BioNanoScience 5 (2015) 135. https://doi.org/10.1007/s12668-015-0171-z.

K. H. Hassan, A. A. Jarullah, S .K. Saadi & P. Harris, “Green synthesis and structural characterisation of CuO nanoparticles prepared by using fig leaves extract”, Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences 61 (2018) 59. https://doi.org/10.52763/pjsir.phys.sci.61.2.2018.59.65.

M. Gowri, N. Latha & M. Rajan, “Copper oxide nanoparticles synthesized using Eupatorium odoratum, Acanthospermum hispidum leaf extracts, and its antibacterial effects against pathogens: a comparative study”, BioNanoScience 9 (2019) 545. https://doi.org/10.1007/s12668-019-00655-7.

N. Al-Qasmi, “Facial eco-friendly synthesis of copper oxide nanoparticles using chia seeds extract and evaluation of its electrochemical activity”, Processes 9 (2021) 2027. https://doi.org/10.3390/pr9112027.

M. Yadav, S. Jain, R. Tomar, G. B. K. S. Prasad & H. Yadav, “Medicinal and biological potential of pumpkin: An updated review”, Nutrition Research Reviews 23 (2010) 184. https://doi.org/10.1017/S0954422410000107.

E. P. Mukhokosi, M. Maaza, M. Tibenkana, N. L. Botha, L. Namanya, I. G. Madiba & M. Okullo, “Optical absorption and photoluminescence properties of Cucurbita maxima dye adsorption on TiO2 nanoparticles”, Materials Research Express 10 (2023) 046203. https://doi.org/10.1088/2053-1591/acce91.

E. P. Mukhokosi, T. Mohammed, N. Loyce, N. L. Botha, M. Maaza & D. Velauthapillai, “Co-sensitization effect of chlorophyll and anthocyanin on optical absorption properties and power conversion efficiency of dyesensitized solar cells”, Journal of the Korean Physical Society 84 (2024) 858. https://doi.org/10.1007/s40042-024-01070-2.

M. D. Tyona, “A theoritical study on spin coating technique”, Advances in Materials Research 2 (2013) 195. https://doi.org/10.12989/amr.2013.2.4.195.

S. J. Kim, J. H. We, J. S. Kim, G. S. Kim & B. J. Cho, “Thermoelectric properties of P-type Sb2Te3 thick film processed by a screenprinting technique and a subsequent annealing process”, Journal of alloys and compounds 582 (2014) 177. https://doi.org/10.1016/j.jallcom.2013.07.195.

S. Sathyajothi, R. Jayavel & A.C. Dhanemozhi, “The fabrication of natural dye sensitized solar cell (Dssc) based on TiO2 using Henna and Beetroot dye extracts”, Materials Today: Proceedings 4 (2017) 668. https://doi.org/10.1016/j.matpr.2017.01.071.

G .W. Mukwaya, B. Enjiku & E. P. Mukhokosi, “Structural and mechanical properties of non-glazed ceramic tiles developed from selected mineral deposits in Uganda”, Nano-Horizons: Journal of Nanosciences and Nanotechnologies 2 (2023) 14. https://doi.org/doi.org/10.25159/NanoHorizons/13816.

T. S. Aldeen, H. E. Ahmed Mohamed & M. Maaza, “ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity”, Journal of Physics and Chemistry of Solids 160 (2022) 110313. https://doi.org/10.1016/j.jpcs.2021.110313.

W .W. Andualem, F. K. Sabir, E.T. Mohammed, H. H. Belay & B. A. Gonfa, “Synthesis of copper oxide nanoparticles using plant leaf extract of catha edulis and its antibacterial activity”, Journal of Nanotechnology 2020 (2020) 2932434. https://doi.org/10.1155/2020/2932434.

W. Hou & S. B. Cronin, “A review of surface plasmon resonanceenhanced photocatalysis”, Advanced Functional Materials 23 (2013) 1612. https://doi.org/10.1002/adfm.201202148.

R. W. Johns, H. A. Bechtel, E. L. Runnerstrom, A. Agrawal, S. D. Lounis & D. J. Milliron, “Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals”, Nature Communications 7 (2016) 11583. https://doi.org/10.1038/ncomms11583.

E. P. Mukhokosi, S. B. Krupanidhi & K. K. Nanda, “Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection”, Scientific reports 7 (2017) 15215. https://doi.org/10.1038/s41598-017-15519-x.

V. Solanki, S. Majumder, I. Mishra, S. R. Joshi , D. Kanjilal & S. Varma, “Size-dependent optical properties of TiO2 nanostructures”, Radiation Effects and Defects in Solids 168 (2013) 518. https://doi.org/10.1080/10420150.2013.777444.

R. Article, M. U. Khan, S. Honey, M. Abbas, T. Ahmad, A. Sohail, J. Ahmad, H. Ullah, Z. Talib, A. Umar, J. Sohail, K. Makgopa & J. Asim, “Metal nanoparticles : Synthesis approach , types and applications – a mini review”, Journal of Nanosciences and Nanotechnologies 2 (2023) 21. https://doi.org/doi.org/10.25159/NanoHorizons.87a973477e35.

M. Malik, M. Henini, F. Ezema, E. Manikandan, J. Kennedy, K. Bouziane, M. Chaker, A. Gibaud, A.K.F. Haque, Z. Nuru, I. Ahmad, R. Obodo & M. Akbari, “Peculiar size effects in nanoscaled systems”, Journal of Nanosciences and Nanotechnologies 1 (2022) 36. https://doi.org/10.25159/nanohorizons.9d53e2220e31.

P. K. Raul, S. Senapati, A. K. Sahoo, I. M. Umlong, R. R. Devi, A. J. Thakur & V. Veer, “CuO nanorods: A potential and efficient adsorbent in water purification”, RSC Advances 4 (2014) 40580. https://doi.org/10.1039/c4ra04619f.

K. Vishveshvar, M. V. Aravind Krishnan, K. Haribabu & S. Vishnuprasad, “Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization”, BioNanoScience 8 (2018) 554. https://doi.org/10.1007/s12668-018-0508-5.

R. Sathyamoorthy & K. Mageshwari, “Synthesis of hierarchical CuO microspheres: Photocatalytic and antibacterial activities”, Physica E: Lowdimensional Systems and Nanostructures 47 (2013) 157. https://doi.org/10.1016/j.physe.2012.10.019.

A. H. Alami, B. Rajab, J. Abed, M. Faraj, A. A. Hawili & H. Alawadhi, “Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications”, Energy 174 (2019) 526. https://doi.org/10.1016/j.energy.2019.03.011.

L. Wang, Y. Shi, H. Zhang, X. Bai, Y. Wang & T. Ma, “Iron oxide nanostructures as highly efficient heterogeneous catalysts for mesoscopic photovoltaics”, Journal of Materials Chemistry A 2 (2014) 15279. https://doi.org/10.1039/c4ta03727h.

M. Wu, X. Lin, A. Hagfeldt & T. Ma, “A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells”, Chemical Communications 57 (2011) 4535. https://doi.org/10.1039/c1cc10638d.

G. R. Mutta, S. R. Popuri, J. I. B. Wilson & N. S. Bennett, “Sol-gel spin coated well adhered MoO3 thin films as an alternative counter electrode for dye sensitized solar cells”, Solid State Sciences 61 (2016) 84. https://doi.org/10.1016/j.solidstatesciences.2016.08.016.

C. H. Tsai, P. H. Fei, C. M. Lin & S. L. Shiu, “CuO and CuO/graphene nanostructured thin films as counter electrodes for Pt-free dye-sensitized solar cells”, Coatings 8 (2018) 21. https://doi.org/10.3390/coatings8010021.

J. C. Morka, I. E. Ottih & N. S. Umeokwonna, “Growth and characterization of dye-sensitized solar cells using dyes from Mangifera indica, Manihot esculenta and Hibiscus sabdariffa leaves by sol-gel technique”, Journal of Applied Sciences and Environmental Managemen 26 (2022) 1785. https://doi.org/10.4314/jasem.v26i11.8.

G. Richhariya, A. Kumar, P. Tekasakul & B. Gupta, “Natural dyes for dye sensitized solar cell: A review”, Renewable and Sustainable Energy Reviews 69 (2017) 705. https://doi.org/10.1016/j.rser.2016.11.198.

J. Gong, K. Sumathy, Q. Qiao & Z. Zhou, “Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends”, Renewable and Sustainable Energy Reviews 68 (2017) 234. https://doi.org/10.1016/j.rser.2016.09.097.

G. F. C. Mejica, Y. Unpaprom & R. Ramaraj, “Fabrication and performance evaluation of dye-sensitized solar cell integrated with natural dye from Strobilanthes cusia under different counter-electrode materials”, Applied Nanoscience 13 (2023) 1073. https://doi.org/10.1007/s13204-021-01853-0.

D. Eli, P. M. Gyuk & E. Danladi, “Chlorophyll and betalain as lightharvesting pigments for nanostructured TiO2 based dye-sensitized solar cells”, Journal of Energy and Natural Resources 5 (2016) 53. https://doi.org/10.11648/j.jenr.20160505.11.

D. D. Pratiwi, F. Nurosyid, A. Supriyanto & R. Suryana, “Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance”, Journal of physics: Conference series 776 (2016) 012007. https://doi.org/10.1088/1742-6596/776/1/012007.

M. K. Hossain, M. F. Pervez, M. N. H. Mia, A. A. Mortuza, M. S. Rahaman, M. R. Karim, J. M. M. Islam, F. Ahmed & M. A. Khan, “Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells”, Results in Physics 7 (2017) 1516. https://doi.org/10.1016/j.rinp.2017.04.011.

Published

2025-02-01

How to Cite

Green synthesis of CuO nanoparticles from Cucurbita maxima leaf extract; a platinum free counter electrode for dye sensitized solar cells. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2309. https://doi.org/10.46481/jnsps.2025.2309

Issue

Section

Physics & Astronomy

How to Cite

Green synthesis of CuO nanoparticles from Cucurbita maxima leaf extract; a platinum free counter electrode for dye sensitized solar cells. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2309. https://doi.org/10.46481/jnsps.2025.2309