Optimizing precision farming: enhancing machine learning efficiency with robust regression techniques in high-dimensional data
Keywords:
lasso, Ridge, M-estimation, MM-estimation, Robust RegressionAbstract
Smart precision farming leverages IoT, cloud computing, and big data to optimize agricultural productivity, lower costs, and promote sustainability through digitalization and intelligent methodologies. However, it faces challenges such as managing complex variables, addressing multicollinearity, handling outliers, ensuring model robustness, and enhancing accuracy, particularly with small to medium-sized datasets. To overcome these obstacles, reducing retraining time and resolving the complexity issue is essential for improving the machine learning algorithm’s performance, scalability, and efficiency, especially when dealing with large or high-dimensional datasets. In a recent study involving 435 drying parameters and 1,914 observations, two machine learning algorithms - Ridge and Lasso - were employed to analyze and compare the impact of two variable selection techniques, specifically the regularization methods Ridge and Lasso, before and after addressing heterogeneity in highly ranked variables (50, 100, 150, 200, 250, 300). Additionally, robust regression methods such as S, M, MM, M-Hampel, M-Huber, M-Tukey, MM-bisquare, MM-Hampel, and MM-Huber were applied. The results demonstrated that the robust methods, when applied to Ridge and Lasso, achieved the highest efficiency, with the smallest values for MAPE, MSE, SSE, and the highest R2 values, both before and after accounting for heterogeneity. As a result of the study, the best models are the Ridge model with the MM bisquares before heterogeneity, the Ridge model with the MM method after heterogeneity, and the Lasso model with the MM method before heterogeneity and the Lasso model with MM Hampel after heterogeneity.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Nour Hamad Abu Afouna, Majid Khan Majahar Ali

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- Christian N. Nwaeme, Adewale F. Lukman, Robust hybrid algorithms for regularization and variable selection in QSAR studies , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 4, November 2023
- Shaymaa Mohammed Ahmed, Majid Khan Majahar Ali, Arshad Hameed Hasan, Evaluating feature selection methods in a hybrid Weibull Freund-Cox proportional hazards model for renal cell carcinoma , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- O. G. Obadina, Adedayo Funmi Adedotuun, O. A. Odusanya, Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 4, November 2021
- Umaru Hassan, Mohd Tahir Ismail, Improving forecasting accuracy using quantile regression neural network combined with unrestricted mixed data sampling , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 4, November 2023
- G. A. Shewa, F. I. Ugwuowo, Combating the Multicollinearity in Bell Regression Model: Simulation and Application , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
- Oluwayemisi Oyeronke Alaba, B. M. Golam Kibria, The Efficiency of the K-L Estimator for the Seemingly Unrelated Regression Model: Simulation and Application , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 3, August 2023
- Shaymaa Mohammed Ahmed, Majid Khan Majahar Ali, Raja Aqib Shamim, Integrating robust feature selection with deep learning for ultra-high-dimensional survival analysis in renal cell carcinoma , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 4, November 2025
- Nahid Salma, Majid Khan Majahar Ali, Raja Aqib Shamim, Machine learning-based feature selection for ultra-high-dimensional survival data: a computational approach , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- Omodele Olubi, Ebeneze Oniya, Taoreed Owolabi, Development of Predictive Model for Radon-222 Estimation in the Atmosphere using Stepwise Regression and Grid Search Based-Random Forest Regression , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 2, May 2021
- O. J. Ibidoja, F. P. Shan, Mukhtar, J. Sulaiman, M. K. M. Ali, Robust M-estimators and Machine Learning Algorithms for Improving the Predictive Accuracy of Seaweed Contaminated Big Data , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 1, February 2023
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Lek Ming Lim, Yang Lu, Ahmad Sufril Azlan Mohamed, Majid Khan Majahar Ali, Data safety prediction using YOLOv7+G3HN for traffic roads , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 3, August 2024

