Patti formation shales at Agbaja Plateau: A geochemical window into the provenance and tectonic setting history of the Southern Bida Basin, Nigeria

Authors

  • Olusola J. Ojo Department of Geology, Federal University, P.M.B. 373, Oye Ekiti, Nigeria
  • Suraju A. Adepoju Department of Geology and Mineral Science, Kwara State University, P.M.B. 1530, Malete, Kwara State, Nigeria
  • Ayodeji Awe Department of Geology, Federal University, P.M.B. 373, Oye Ekiti, Nigeria
  • Kehinde A. Alalade Department of Geology, Federal University, P.M.B. 373, Oye Ekiti, Nigeria

Keywords:

Shales, Geochemistry, Provenance, Bida, Patti

Abstract

     


Agbaja Plateau is one of the mesas that dotted the topography of north centrally located Bida Basin. Seventeen shale samples from the exposed Maastrichtian Patti Formation at Agbaja Plateau were analyzed using x-ray fluorescence (XRF) and inductive coupled plasma mass spectrophotometry (ICPMS) with the aim of unroofing the provenance, weathering and paleotectonic history of the basin. The provenance-sensitive elemental ratios; Al2O3/TiO2 , Cr/Ni, Th/Cr, La/Sc, Th/Sc and Th/Co and the binary diagrams of Al2O3 vs TiO2, TiO2 vs Zr, reveal that the shales originated from felsic source rock. The Light rare earth elements (LREE) enrichment, Flat heavy rare earth elements (HREE) model, a negative Eu anomaly and positive Ce anomalies, and La/Yb-REE bivariate diagram also reveal sediments derivation predominantly from felsic protolith. The plots of SiO2 versus K2O/Na2Oand Ti/Zr versus La/Sc, and Ti/Zr–La/Sc, Th-Sc-Zr/10, Th–Co-Zr/10, and La-Th-Sc discrimination diagrams show that the shales plotted in the passive margin. The Zr/Sc and Th/Sc ratios and low ICV values show first cycle recycling with heavy mineral enrichment. LREE, with flat HREE distributions, as well as the normalized Gd/Yb and La/Yb enrichment indicate similarity with the post-Archean Australian Average Shales (PAAS). The high values of chemical index of weathering, chemical index of alteration and Plagioclase Index of Alteration indicate that the protolith experienced strong chemical weathering. In conclusion, the study suggest that the investigated shales were derived mainly from felsic source rocks and deposited in passive margin setting similar to the adjacent sedimentary basins in Nigeria and west Africa.

Author Biography

Kehinde A. Alalade, Department of Geology, Federal University, P.M.B. 373, Oye Ekiti, Nigeria

 

Student

Department of Geology

Dimensions

[1] A.J. Edegbai, L. Schwark, & F. E. Oboh-Ikuenobe, “Nature of dispersed organic matter and paleoxygenation of the Campano-Maastrichtian dark mudstone unit, Benin flank, western Anambra Basin: Implications for Maastrichtian Trans-Saharan seaway paleoceanographic conditions”, Journal of African Earth Sciences 162 (2019) 103654. https://doi.org/10.1016/j.jafrearsci.2019.103654.

[2] W. R. Dickinson & C. A. Suczek, “Plate tectonics and sandstone compositions”, American Association of Petroleum Geologists Bulletin 63 (1979) 2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D

[3] M. R. Bhatia, “1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control”, Sedimentary Geology 45 (1985) 113. https://doi.org/10.1016/0037-0738(85)90025-9.

[4] M. R. Bhatia, 1983, “Plate tectonics and geochemical composition of sandstones”, The Journal of Geology 91 (1983) 627. https://doi.org/10.1086/628815.

[5] W. R. Dickinson, L. S. Beard, G. R. Brakenridge, J. L. Evjavec, R. C. Ferguson, K. F. Inman, R. A. Knepp, F. A. Lindberg, & P. T. Ryberg, “Provenance of North American Phanerozoic sandstones in relation to tectonic setting”, Geological Society of America Bulletin 94 1982 234. https://ui.adsabs.harvard.edu/linkgateway/1983GSAB...94..222D/doi:10.1130/0016-7606(1983)94%3C222:PONAPS%3E2.0.CO;2.

[6] H. Dypvik, “Geochemical Compositions and Depositional Conditions of Upper Jurassic and Lower Cretaceous Yorkshire Clays, England”, Geological Magazine 121 (1984) 504. https://doi.org/10.1017/S0016756800030028.

[7] S. R. Taylor & S. M. Mclennan, “An examination of the geochemical record preserved in sedimentary rocks”, The Continental Crust: Its Composition and Evolution, Blackwell Scientific Publications, U.K, Oxford, 1985, pp. 300–312. https://www.scirp.org/reference/referencespapers?referenceid=1868332.

[8] M. R. Bhatia & K. A. W. Crook “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins”, Contributions to Mineralogy and Petrology 92 (1986) 193. https://doi.org/10.1007/BF00375292.

[9] L. J. Suttner & P. K. Dutta, “Alluvial sandstone deposition and paleoclimate, I. Framework mineralogy” Journal of Sedimentary Petrology 56 (1986) 344. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.

[10] F. J. Pettijohn, P. E. Potter & R. Siever, Sand and Sandstone, Springer, Berlin, 1987, pp. 523–553. http://dx.doi.org/10.1007/978-1-4612-1066-5.

[11] S. M. Mclennan, “Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes”, in Geochemistry and Mineralogy of Rare Earth Elements, B. R. Lipin, & G. A. McKay (Eds.), Reviews in Mineralogy, Houston, Texas, USA, 1989, pp. 192–200. https://doi.org/10.1515/9781501509032-010.

[12] G. Dera, P. Pellenard, P. Neige, J. Deconinck, E. Puceat & J. L. Dom-´ mergues, “Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons”, Palaeogeography, Palaeoclimatology, Palaeoecology 271 (2009) 51. https://doi.org/10.1016/j.palaeo.2008.09.010.

[13] S. M. Mclennan, S. Hemming, D. K. Mcdaniel & G. N. Hanson, “Geochemical approaches to sedimentation, provenance and tectonics”, in Processes Controlling the Composition of Clastic Sediments, M. J. Johnsson & A. Basu (Eds.), Special Paper of Geological Society of America, USA, 1993, pp. 40–284. https://doi.org/10.1130/SPE284-p21.

[14] S. B. Kroonenberg, Effects of Provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environment, Proceedings of the 29th International Geological Congress, Part A, 1994, pp. 69–81. https://www.researchgate.net/publication/40207477.

[15] G. J. Weltje, X. D. Meijer & P. L. de Boer, “Stratigraphic inversion of siliciclastic basin fills: a note on the distinction between supply signals resulting from tectonic and climatic forcing”, Basin Research 10 (1998) 153. https://doi.org/10.1046/j.1365-2117.1998.00057.x.

[16] J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma & S. Ramasamy, “Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting”, Journal of Sedimentary Research 74 (2004) 297. https://doi.org/10.1306/082803740285.

[17] J. S. Armstrong-Altrin, & S. P. Verma, “Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings”, Sedimentary Geology 177 (2005) 129. https://doi.org/10.1016/j.sedgeo.2005.02.004.

[18] O. J. Ojo, S. A. Adepoju & D.A. Adedoyin “Combined Petrographic and Geochemical Studies of Maastrichtian Patti Formation Sandstone, Bida Basin, Nigeria: Implications for Provenance and Compositional Maturity”, Ilorin Journal of Science 2 (2015) 189. https://iljs.org.ng/index.php/iljs/article/view/85.

[19] M. E. Nton & O. J. Adamolekun, “Sedimentological and geochemical characteristics of outcrop sediments of southern Bida Basin, Central Nigeria: Implications for provenance, paleoenvironment and tectonic history” Ife Journal of Science 18 (2016) 369. https://www.ajol.info/index.php/ijs/article/view/144823.

[20] S. I. Bankole, A. Akinmosin, T. Omeru & H. E. Ibrahim, “Heavy Mineral Distribution in the Lokoja and Patti Formations, Southern Bida Basin, Nigeria: Implications for Provenance, Maturity and Transport History” RMZ – Materials and Geoenvironment 66 (2019) 198. https://doi.org/10.2478/rmzmag-2019-0011.

[21] O. J. Ojo, S. A. Adepoju A. Awe & M. O. Adeoye, “Mineralogy and geochemistry of the sandstone facies of Campanian Lokoja Formation in the Southern Bida basin, Nigeria: implications for provenance and weathering history” Heliyon 7 (2021) e08564. https://doi.org/10.1016/j.heliyon.2021.e08564.

[22] L. C. King, “Outline and distribution of Gondwanaland” Geological Magazine 87 (1950) 359. http://dx.doi.org/10.1017/S0016756800077311.

[23] W. Q. Kennedy, “The influence of basement structure on the evolution of the coastal (Mesozoic and Tertiary) basins”, Proceedings of the Institute of Petroleum Geologists Society, London on Recent Basins around Africa, 1965, pp. 35–47. http://dx.doi.org/10.1144/jgs.157.6.1179.

[24] D. R. Adeleye, “Origin of Ironstones, an example from the Middle Niger Basin, Nigeria”, Journal of Sedimentary Petrology 43 (1972) 727. https://doi.org/10.1306/74D7284C-2B21-11D7-8648000102C1865D.

[25] S. B. Ojo, & D. E. Ajakaiye, “Preliminary interpretation of gravity measurements in the middle N?ger Basin area, Nigeria” in Geology of Nigeria, 2nd ed. C.A. Kogbe (Ed.), Elizabethan Publishing Company, Lagos, 1989, pp. 347–358. https://www.scirp.org/reference/referencespapers?referenceid=1791025.

[26] C. A. Kogbe, D. E. Ajakaiye & G. Matheis, “Confirmation of Rift Structure along the Mid-Niger Valley, Nigeria” Journal of African Earth Sciences 1 (1983) 131. https://doi.org/10.1016/0899-5362(83)90004-0.

[27] D. E. Ajakaiye & K. A. Burke, “Bouguer gravity map of Nigeria”, Tectonophysics 16 (1973) 103. https://doi.org/10.1016/0040-1951(73) 90134-0.

[28] A. J. Whiteman, Nigeria: It’s Petroleum Geology: Resources and Potential, Graham and Trotman, London, 1982, pp. 384–394. https://doi.org/10.1007/978-94-009-7361-9.

[29] S. P. Braide, “Syntectonic Fluvial Sedimentation in the Central Bida Basin”, Journal of Mining and Geology 28 (1992) 55. https://www.sciepub.com/reference/108380.

[30] S. B. Ojo., ``Origin of a major aeromagnetic anomaly in the Middle Niger Basin, Nigeria'', Tectonophysics 185 (1990) 162. https://doi.org/10.1016/0040-1951(90)90410-A.

[31] H. A. Jones, “The Oolitic Ironstone of Agbaja Plateau, Kabba Province”, Record of the Geological Survey of Nigeria 1 (1958) 20. https://www.sciepub.com/reference/110330.

[32] D. R. Adeleye & T. F. J. Dessauvagie, “Stratigraphy of the Niger Embayment, near Bida, Nigeria”, in African Geology, T. F. J. Dessauvagie & A. J. Whiteman (Eds.), University of Ibadan Press, Ibadan, Nigeria, 1972, pp. 181–185. https://www.scirp.org/reference/referencespapers?referenceid=3159922.

[33] O. J. Ojo & S. O. Akande, “Sedimentology and depositional environments of the Maastrichtian Patti Formation, south-eastern Bida Basin, Nigeria”, Cretaceous Research 30 (2009) 1425. https://doi.org/10.1016/j.cretres.2009.08.006.

[34] S. O. Akande, O. J. Ojo, B. D. Erdtmann & M. Hetenyi, “Palaeoenvironments, Organic Petrology and Rock-eval Studies on Source Rock Facies of the Lower Maastrichtian Patti Formation, Southern Bida Basin, Nigeria”, Journal of African Earth Sciences 41 (2005) 406. https://doi.org/10.1016/j.jafrearsci.2005.07.006.

[35] S. R. Taylor & S. M. Mclennan, The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks, Blackwell Science, Oxford, U.K, 1985 pp. 1–312. https://search.worldcat.org/title/continental-crust-its-composition.

[36] H. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation, Longman, 1993, pp. 1–352. https://www.researchgate.net/profile/Mahjoor-Lone/post/.

[37] P. E. Potter, “Petrology and chemistry of modern big river sands”, Journal of Geology 86 (1978) 449. https://doi.org/10.1086/649711.

[38] B. P. Roser & R. J. Korsch “Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio”, Journal of Geology 94 (1986) 650. https://www.journals.uchicago.edu/doi/abs/10.1086/629071.

[39] B. P. Roser, R. A. Cooper, S. Nathan & A. J. Tulloch, “Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand: New Zealand”, Journal of Geology and Geophysics 39 (1996) 16. https://doi.org/10.1080/00288306.1996.9514690.

[40] R. Cox, D. R. Lowe & R. L. Cullers, “The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States”, Geochimica et Cosmochimica Acta 59 (1995) 2940. https://doi.org/10.1016/0016-7037(95)00185-9.

[41] K. A. W. Crook, “Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes)”, in Modern and Ancient Geosynclinal Sedimentation, R. H. Dott Jr., R. H. Shaver (Eds.), SEPM Special Publication, 1974, pp. 304–310. https://doi.org/10.2110/pec.74.19.0304.

[42] H. W. Nesbitt & G. Young, “Early Proterozoic climates and plate motions inferred from major elements chemistry of lutites”, Nature 299 (1982) 717. https://doi.org/10.1038/299715a0.

[43] L. Harnois, “The CIW index: a new chemical index of weathering”, Sedimentary Geology 55 (1988) 322. https://doi.org/10.1016/0037-0738(88)90137-6.

[44] C. M. Fedo, H. W. Nesbitt & G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance”, Geology 23 (1995) 924. http://dx.doi.org/10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2.

[45] C. M. Fedo, K. A. Eriksson & E. J. Krogstad, “Geochemistry of shales from the Archean (3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering”, Geochimica et Cosmochimica Acta 60 (1995) 1763. https://doi.org/10.1016/0016-7037(96)00058-0.

[46] C. Descourvieres, G. Douglas, L. Leyland, N. Hartog & H. Prommer, “Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: the Cretaceous Leederville Formation, south-west Australia”, Sedimentary Geology 236 (2011) 75. https://doi.org/10.1016/j.sedgeo.2010.12.006.

[47] P. J. Depetris & J. L. Probst, “Variability of the chemical index of alteration (CIA) in the Parana River suspended load”, Mineralogical Magazine´ 62A (1998) 367. https://doi.org/10.1180/minmag.1998.62A.1.193.

[48] X. Long, C. Yuan, M. Sun, W. Xiao, Y. Wang, K. Cai & Y. Jiang, “Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central 42 Asia: Evidence for a northwardderived mafic source and insight into Nd model ages in accretionary orogeny”, Gondwana Research 22 2012 554. https://doi.org/10.1016/j.gr.2011.04.009.

[49] H. W. Nesbitt & G. M. Young, “Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations”, Geochimica et Cosmochimica Acta 48 1984 1534. https://doi.org/10.1016/0016-7037(84)90408-3.

[50] H. W. Nesbitt & G. M. Young, “Formation and diagenesis of weathering profiles”, Journal of Geology 97 (1989) 147. https://doi.org/10.1086/629290.

[51] D. Garcia, M. Fonteilles & J. Moutte, “Sedimentary fractionation between Al, Ti, and Zr and genesis of strongly peraluminous granites”, Journal of Geology 102 (1994) 411. https://doi.org/10.1086/629683.

[52] M. J. Le-Bas, R. W. Le Maitre, A. Streckeisen & B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram”, Journal of Petrology 27 (1986) 750. https://doi.org/10.1093/petrology/27.3.745.

[53] K. Hayashi, H. Fujisawa, H. Holland & H. Ohmoto, “Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada”, Geochimica et Cosmochimica Acta 61 (1997) 4137. https://doi.org/10.1016/S0016-7037(97)00214-7.

[54] D. J. Wronkiewicz & K. C. Condie, “Geochemistry and Mineralogy of Sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic Evolution during the Early Proterozoic”, Geochimica et Cosmochimica Acta 54 (1990) 354. https://doi.org/10.1016/0016-7037(90)90323-D.

[55] R. L. Cullers, “The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA”, Chemical Geology 113 (1994) 343. https://doi.org/10.1016/0009-2541(94)90074-4.

[56] R. L. Cullers, “The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permianage, Colorado, USA: implications for provenance and metamorphic studies”, Lithos 51 (2000) 181. https://doi.org/10.1016/S0024-4937(99)00063-8.

[57] K. C. Condie & D. J. Wronkiewicz, “A new look at the Archean-Proterozoic boundary: Sediments and the tectonic setting constraint”, in Precambrian Continental Crust and Its Economic Resources, S. M. Naqvi (Ed.), Elsevier, Amsterdam, 1990, pp. 61-84. https://doi.org/10.1016/S0166-2635(08)70162-2.

[58] H. Basu, P. S. Dandele, K. Ramesh Kumar, K. K. Achar, & K. Umamaheswar, “Geochemistry of black shales from the Mesoproterozoic Srisailam Formation, Cuddapah basin, India: Implications for provenance, palaeoweathering, tectonics, and timing of Columbia breakup”, Geochemistry 77 (2017) 596. https://doi.org/10.1016/j.chemer.2017.10.002.

[59] S. M. McLennan, S. Hemming, D. K. McDaniel & G. N. Hanson, “Geochemical approaches to sedimentation, provenance, and tectonics”, in Processes Controlling the Composition of Clastic Sediments, M. J. Johnsson, A. Basu, (Eds.), Special Paper of Geological Society of America, USA, 1993, 284, pp. 40. https://doi.org/10.1130/SPE284-p21.

[60] R. L. Cullers, & J. L. Graf, “Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks - Ore Petrogenesis”, in Developments in Geochemistry, P. Henderson (Ed.) Elsevier, 1984, pp. 275-316. https://doi.org/10.1016/B978-0-444-42148-7.50013-7.

[61] P. A. Floyd & B. E. Leveridge, “Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones”, Journal of the Geological Society 144 (1987) 542. https://doi.org/10.1144/gsjgs.144.4.0531.

[62] R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA”, Chemical Geology 191 (2002) 327. https://doi.org/10.1016/S0009-2541(02)00133-X.

[63] L. Bracciali, M. Marroni, L. Pandolfi & S. Rocchi, “Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apenninces): from source areas to configuration of margins”, in Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry, J. Arribas, S. Critelli, M. J. Johnsson (Eds.), Geological Society of America Special Paper, 2007, pp. 73–93. https://doi.org/10.1130/2006.2420(06).

[64] J. B. Maynard, R. Valloni & H. Yu, “Composition of modern deep-sea sands from arc-related basins. Geological Society of London”, Special Publication 10 (1982) 551. https://doi.org/10.1144/GSL.SP.1982.010.01.36.

[65] B. P. Roser & R. J. Korsch, “Provenance signatures of sandstonemudstone suites determined using discrimination function analysis of major-element data”, Chemical Geology 67 1988 139. https://doi.org/10.1016/0009-2541(88)90010-1.

[66] S. M. McLennan, S. R. Taylor, M. T. McCulloch & J. B. Maynard, “Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations”, Geochimica et Cosmochica Acta 54 (1990) 2015. https://doi.org/10.1016/0016-7037(90)90269-Q.

[67] S. M. McLennan, & S. R. Taylor, “Sedimentary-Rocks and Crustal Evolution: Tectonic Setting and Secular Trends”, Journal of Geology 99 (1991) 1. https://doi.org/10.1086/629470.

[68] B. D. Evamy, J. Haremboure, P. Kamerling, W. A. Knaap, F. A. Molloy & P. H. Rowlands, ``Hydrocarbon habitat of Tertiary Niger Delta'', American Association of Petroleum Geologists Bulletin 62 (1978) 39. http://doi.org/10.1306/C1EA47ED-16C9-11D7-8645000102C1865D.

[69] J. E. Damuth & N. Kumar, “Amazon Cone: Morphology, Sedimentation, Growth Pattern, and Comparisons with Other Modern Submarine Fan”, Marine Geology 18 (1975) 117. https://doi.org/10.1016/0025-3227(75)90008-2.

[70] T. N. Zobah, C. D. Adenutsi, G. C. Amedjoe, M. C. Wilson, C. D. Boateng, J. A. Quaye, S. Erzuah, L. Wang, G. Zhao, H. Karimaie & S. K. Danuor, “A review on the provenance of the Voltaian Basin, Ghana: Implications for hydrocarbon prospectivity”, Scientific African 18 (2022) e01429. https://doi.org/10.1016/j.sciaf.2022.e01429.

Published

2025-08-01

How to Cite

Patti formation shales at Agbaja Plateau: A geochemical window into the provenance and tectonic setting history of the Southern Bida Basin, Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2376. https://doi.org/10.46481/jnsps.2025.2376

How to Cite

Patti formation shales at Agbaja Plateau: A geochemical window into the provenance and tectonic setting history of the Southern Bida Basin, Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2376. https://doi.org/10.46481/jnsps.2025.2376