The effect of imbalance data mitigation techniques on cardiovascular disease prediction
Keywords:
Imbalance dataset, Cardiovascular disease prediction, SMOTE-TOMEK, Marchine learning, Overfitting and UnderfittingAbstract
The prevalence of class imbalance is a common challenge in medical datasets, which can adversely affect the performance of machine learning models. This paper explores how several data imbalance mitigation techniques affect the performance of cardiovascular disease prediction. This study applied various data balancing techniques on a real-life cardiovascular disease (CVD) dataset of 1000 patient records with 14 features obtained from the University of Abuja Teaching Hospital Nigeria to address this problem. The data balancing techniques used include random under-sampling, Synthetic Minority Over-sampling Technique (SMOTE), Synthetic Minority Oversampling-Edited Nearest Neighbour (SMOTE-ENN), and the combination of SMOTE and Tomek Links undersampling (SMOTE-TOMEK). After applying these techniques, their performance was evaluated on seven machine learning models, including Random Forest, XGBoost, LightGBM, Gradient Boosting, K-Nearest Neighbours, Decision Tree, and Support Vector Machine. The evaluation metrics used are precision, recall, F1-score, accuracy, and receiver operating characteristic-area under the curve (ROC-AUC). Learning curve plots were also used to showcase the impact of the different data balancing techniques on the challenges of overfitting and underfitting. The results showed that the application of data balancing techniques significantly enhances the performance of machine learning models in heart disease prediction and effectively addresses the challenges of overfitting and underfitting with SMOTE-TOMEK, yielding the best-balanced fit as well as the highest precision, recall, F1-score, accuracy of 92%, and ROC-AUC of 96% on the Lightweight Gradient Boosting Machine (LightGBM) model. These results underscore the critical role of data balancing in predictive modelling for heart disease and highlight the effectiveness of specific techniques and models in achieving accurate, more reliable, and generalised predictions.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Raphael Ozighor Enihe, Rajesh Prasad, Francisca Nonyelum Ogwueleka, Fatimah Binta Abdullahi

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- L. G. Salaudeen, D. GABI, M. Garba, H. U. Suru, Deep convolutional neural network based synthetic minority over sampling technique: a forfending model for fraudulent credit card transactions in financial institution , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 2, May 2024
- Osowomuabe Njama-Abang, Denis U. Ashishie, Paul T. Bukie, Addressing class imbalance in lassa fever epidemic data, using machine learning: a case study with SMOTE and random forest , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- O. Oderinde, C. L. Mgbechidinma, A. O. Agbeja, A. A. Ajayi, A. O. Ogundiran, O. O. Olaide, O. A. Orelaja, C. A. Mgbechidimma, C. O. Ajanaku, K. D. Oyeyemi, Appraising raw exhaust pollutant gases emissions from industrial generators using statistics and machine learning approaches , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 4, November 2025
- Idongesit E. Eteng, Udeze L. Chinedu, Ayei E. Ibor, A stacked ensemble approach with resampling techniques for highly effective fraud detection in imbalanced datasets , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 1, February 2025
- Muhammad Dahiru Liman, Salamatu Ibrahim Osanga, Esther Samuel Alu, Sa'adu Zakariya, Regularization Effects in Deep Learning Architecture , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 2, May 2024
- Santosh Kumar Upadhyay, Rajesh Prasad, Efficient-ViT B0Net: A high-performance light weight transformer for rice leaf disease recognition and classification , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 4, November 2025
- Paavithashnee Ravi Kumar, Majid Khan Majahar Ali, Olayemi Joshua Ibidoja, Identifying heterogeneity for increasing the prediction accuracy of machine learning models , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 3, August 2024
- Gabriel James, Ifeoma Ohaeri, David Egete, John Odey, Samuel Oyong, Enefiok Etuk, Imeh Umoren, Ubong Etuk, Aloysius Akpanobong, Anietie Ekong, Saviour Inyang, Chikodili Orazulume, A fuzzy-optimized multi-level random forest (FOMRF) model for the classification of the impact of technostress , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- A. B Yusuf, R. M Dima, S. K Aina, Optimized Breast Cancer Classification using Feature Selection and Outliers Detection , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 4, November 2021
- Chinedu L. Udeze, Idongesit E. Eteng, Ayei E. Ibor, Application of Machine Learning and Resampling Techniques to Credit Card Fraud Detection , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
You may also start an advanced similarity search for this article.

