Comparative analysis of lithium enrichment mechanisms in aquifers in the Benue Trough

Authors

  • Rhoda Bernard Gusikit Department of Geology, Faculty of Natural Sciences, University of Jos, Jos (930001), Nigeria
  • Solomon Nehemiah Yusuf Department of Geology, Faculty of Natural Sciences, University of Jos, Jos (930001), Nigeria
  • Hyeladi Usman Dibal Department of Geology, Faculty of Natural Sciences, University of Jos, Jos (930001), Nigeria
  • Victor Bulus Diyelmak Department of Geology, Faculty of Natural Sciences, University of Jos, Jos (930001), Nigeria
  • Ahmed Isah Haruna Abubakar Tafawa Balewa University, Bauchi

Keywords:

Lithium concentrations, Ground water, Benue Trough

Abstract

This study investigates the extractability of lithium for energy use from groundwater sources in the Awe part of the Middle Benue Trough. Field measurements of electrical conductivity (EC), total dissolved solids (TDS), temperature, and pH were conducted using a portable meter. Lithium concentrations in 53 groundwater sources, including 17 well samples, 31 borehole samples, and 5 springs were sampled and analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Oxygen isotopes (?18O) were analysed using CO2 equilibration, and hydrogen isotopes (?2H) were analysed by thermochemical reduction to characterize the aquifers. The results indicate that three well water samples (A18, A19, and A38a) have lithium concentrations within seawater values (100-200 µg/L). Similarly, three borehole samples (A6, A15, and A38b) fall within this range, while three other borehole samples A17(794.6 µg/L), A35a(1,826 µg/L), and A37b(330.2 µg/L) exhibit significantly higher concentrations respectively. Among the spring water samples, three samples have lithium concentrations below seawater values, while the remaining two samples A13(1,810 µg/L) and A35b(1,968 µg/L) show elevated levels. Isotopic analysis of ?2H and ?18O identified three distinct types of aquifers in the study area. Water from the deeper aquifer contains high concentrations of lithium, TDS, EC, and elevated temperatures. The lithium concentrations in the deeper saline aquifers A13(1810 µg/L) and A35b(1968 µg/L)suggest significant potential for extraction and use as an energy source.

Dimensions

[1] R. B. Kaunda, “Potential environmental impacts of lithium mining”, Journal of energy & natural resources law 38 (2020) 237. https://doi.org/10.1080/02646811.2020.1754596.

[2] J. Li, H. Zhang, H. Wang & B. Zhang, “Research progress on bioleaching recovery technology of spent lithium-ion batteries”, Environ Res. 238 (2023) 117145. https://doi.10.1016/j.envres.2023.117145.

[3] B. D. Lindsey, K. Belitz, C. A. Cravotta III, P. L. Toccalino & N. M. Dubrovsky, “Lithium in groundwater used for drinking-water supply in the United States”, Science of the Total Environment 767 (2021) 144691. https://doi.org/10.1016/j.scitotenv.2020.144691.

[4] J. Li, X. Wang, C. Ruan, S. Gideon & J. Li, “Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China”, J. Hydrol. 612 (2022) 128022. https://doi.org/10.3390/w15193518.

[5] B. Abdullayev, N. Askarova,R.Toshkodirova, M. Rifky, N. Ayakulov, B. Kurbanov,& M.Samadiy,“Recent Developments in the Extraction of Lithium from WaterResources”, Asian Journal of Chemistry 36 (2024) 275. http://doi.org/10.14233/ajchem.2024.30702.

[6] J. H. Luong, C. Tran & D. Ton-That, “A paradox over electric vehicles, mining of lithium for car batteries”, Energies 15 (2022) 7997. https://doi.org/10.3390/en15217997.

[7] E. J. M. Dugamin, A. Richard, M. Cathelineau, M. C. Boiron, F. Despinois & A. A. Brisset, “Groundwater in sedimentary basins as potential lithium resource: a global prospective study”, Scientific Report 11 (2021) 21091. https://doi.org/10.1038/s41598-021-99912-7.

[8] United States Geological Survey, “Mineral Commodity Summaries 2021”, Mineral Commodity Summaries 2021 2021 200. https://doi.org/10.3133/mcs2021.

[9] T. Bibienne, J. F. Magnan, A. Rupp & N. Laroche, “From mines to mind and mobiles: Society’s increasing dependence on lithium”, Elements 16 (2020) 265. http://doi.org/10.1038/s41598-021-99912-7.

[10] C. Wang, M. Zheng, X. Zhang, Q. Wu, X. Liu, J. Ren & S. Chen, “Geothermal-type lithium resources in Southern Tibetan Plateau”, Sci. Technol. Rev. 38 (2020) 24. https://doi.org/10.31035/cg2022054.

[11] B. Sanjuan, B. Gourcerol, R. Millot, D. Rettenmaier, J. Elodie & R. Aurelien, “Lithium-rich geothermal brines in Europe: An up-date about´ geochemical characteristics and implications for potential Li resources” Geothermics 101 (2022) 102385. https://doi.org/10.1016/j.geothermics.2022.102385.

[12] F. Islam, A. Parvin, U. S. Akhtar, M. A. A. Shaikh, M. N. Uddin & M. K. Hossain, “Sediment-bound hazardous trace metals (oid) in south-eastern drainage system of Bangladesh: First assessment on human health”, Heliyon 9 (2023) 9. https://doi.org/10.1016/j.heliyon.2023.e20040.

[13] S. V. Alexeev, L. P. Alexeeva & A. G. Vakhromeev “Brines of the Siberian Platform (Russia): Geochemistry and processing prospects”, Appl. Geochem. 117 (2020) 104588. https://doi.org/10.1016/j.apgeochem.2020.104588.

[14] A. L. Toba, R. T. Nguyen, C. Cole, G. Neupane & M. P. U. S. Paranthaman, “Lithium resources from geothermal and extraction feasibility”, Resour. Conserv. Recycle 169 (2021) 105514. https://doi.org/10.3390/resources12060068.

[15] M. A. McKibben, W. A. Elders & A. S. K. Raju, “Lithium and other geothermal mineral and energy resources beneath the Salton Sea. In Crisis at the Salton Sea”, Research Gaps and Opportunities 11 (2020) 107. https://doi.org/10.1038/s41598-021-99912-7.

[16] T. Mahmudiono, Y. Fakhri, D.H. Hasti, F. Mehri, M. Einolghozati, S. Mohamadi & A. M. Khaneghah, “The concentration of Lithium in water resources: A systematic review, meta-analysis and health risk assessment”, Rev Environ Health 39 (2023) 667. https://doi.10.1515/reveh-2023-0025.

[17] L. A. Munk, S. A. Hynek, D. C. Bradley, D. Boutt, K. Labay & H. Jochens, “Lithium brines: a global perspective”, Economic Geology 18 (2016) 339. https://doi.org/10.5382/Rev.18.14.

[18] M. P. B. Nicolas, “Preliminary investigation of the potential for lithium in groundwater in sedimentary rocks in southwestern Manitoba”, Manitoba Geological Survey n/a (2017) 183. https://www.manitoba.ca/iem/geo/field/roa17pdfs/GS2017-16.pdf.

[19] I. Yusuf, N. G. Obaje, J. A. Adeoye, L. M. Adamu & T. U. Yusuf, “Geology, reservoir diagenesis and quality of Albian-Cenomanian Keana/Awe Potential reservoir sandstone in Middle Benue Trough, Nigeria”, Lapai Journal of Science and Technology 8 (2022) 16. https://ojs.ibbujournals.com.ng/index.php/lajost/article/view/871.

[20] F. B. Fatoye, M. A. Ibitomi & J. I. Omada, “Lead-Zinc-Barytes mineralization in the Benue Trough, Nigeria: Their geology, occurrences and economic prospective”, Advances in Applied Science Research 5 (2014) 86. https://www.primescholars.com/articles/leadzincbarytesmineralization-in-the-benue

[21] I.Y. Tanko, M. Adam & B. Shettima, “Petrology and geochemistry of barite mineralisation around Azara, North Central Nigeria”, International Journal of Scientific and Technological Research 4 (2015) 44. https://www.researchgate.net/publication/359514973.

[22] U. A. Lar, T. Bata, H. Dibal, S. N. Yusuf, I. Lekmang, M. Goyit & E. Yenne, “Potential petroleum prospects in the middle Benue trough, central Nigeria: Inferences from integrated applications of geological, geophysical and geochemical studies”, Scientific African 19 (2023) 1436. http://dx.doi.org/10.1016/j.sciaf.2022.e01436.

[23] V. U. Ukaegbu & I. O. Akpabio, “Geology and Stratigraphy of Middle Cretaceous Sequences Northeast of Afikpo Basin, Lower Benue Trough, Nigeria”, Pacific Journal of Science and Technology 10 (2009) 518. https://www.academia.edu/59481374/.

[24] L. H. Chan, J. Gieskes, C. You & J. M. Edmond, “Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin”, Geochimica et Cosmochimica Acta 58 (1994) 4443. https://doi.org/10.1016/0016-7037(94)90346-8.

[25] P. P. Strandmann, D. Porcelli, R. H. James, P. V. Calsteren, B. F. Schaefer, I. Reynolds, B. C. Cartwright & K. W. Burton, “Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes”, Earth and Planetary Science Letters 406 (2014) 24. https://doi.org/10.1016/j.epsl.2014.09.014.

[26] W. B. Lyons & K. A. Welch, “Lithium in waters of a polar desert”, Geochimica et Cosmochimica Acta 61 (1997) 4309. https://doi.org/10.1016/S0016-7037(97)00203-2.

[27] B. Sanjuan & R. Millot, “Bibliographical review about Na/Li geothermometry and lithium isotopes applied to worldwide geothermal waters”, 2009. [Online]. https://inis.iaea.org/records/nvcbe-cev35.

[28] L. E. Kent, “The thermal waters of the Union of South Africa and South West Africa”, Trans. Geol. Soc. S. Afr. 52 (1949) 231. https://journals.co.za/doi/pdf/10.10520/AJA10120750_1974.

[29] G. Liu, Z. Zhao & A. Ghahreman, “Novel approaches for lithium extraction from salt-lake brines: A review”, Hydrometallurgy 187 (2019) 81. https://doi.org/10.1016/j.hydromet.2019.05.005.

[30] P.Negrel, R. Millot, A. Brenot & C. Bertin, “Lithium isotopes as tracers´ of groundwater circulation in a peat land”, Chemical Geology 276 (2010) 119. https://doi.org/10.1016/j.chemgeo.2010.06.008.

[31] C. Herrera, L. Godfrey, J. Urrutia, E. Custodio, C. Gamboa, J. Jodar & J. Fuentes, “Origin of old saline groundwater in the deep coastal formations of the Atacama Desert region: Consideration of lithium, boron, strontium and uranium isotopes contents”, Journal of Hydrology 624 (2023) 129919. https://doi.org/10.1016/j.jhydrol.2023.129919.

[32] H. Qi, C. Ma, Z. He, X. Hu & L. Gao, “Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China”, The Science of the total environment 650 (2019) 878. https://doi.org/10.1016/j.scitotenv.2018.09.122.

[33] C. G. Dirisu, M. O. Mafiana, G. B.Dirisu & R.Amodu, “Level of pH in drinking water of an oil and gas producing community and perceived biological and health implications”, European Journal of Basic and Applied Sciences, 3 (2016) 3. https://www.idpublications.org/wpcontent/uploads/2016/.

[34] F.Zarif & H.Eslami, “Assess the Potability of groundwater in terms of TDS and TH (case study: Dezfoul – Andimeshk Plain)”, Bull. Env. Pharmacol. Life Sci., 4 (2014) 10. https://bepls.com/dec_2014/2.pdf.

[35] A.F. Rusydi, “Correlation between conductivity and total dissolved solid in various type of water: A review”, Earth and Environmental Science, 118 (2018) 012019. https://doi.org/10.1088/1755-1315/118/1/012019.

[36] J. Olivier, H. J. Van-Niekerk & I. J. Vander-Walt, “Physical and chemical characteristics of thermal springs in the Waterberg area in Limpopo Province, South Africa”, Water SA 34 (2008) 2. https://doi.org/10.4314/wsa.v34i2.183636.

[37] S. E. Kesler, P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson & T. J. Wallington, “Global lithium resources: Relative importance of pegmatite, brine and other deposit”, Elsevier 48 (2012) 55. https://doi.org/10.1016/j.oregeorev.2012.05.006.

[38] R. B. Gusikit, U. H. Dibal & A.I.Haruna, “Origin of saline groundwater in parts of the Middle Benue Trough, Nigeria”, Journal of Pure and Applied Sciences 22 (2022) 104. https://doi.org/10.5455/sf.gusikitr.

Published

2025-08-01

How to Cite

Comparative analysis of lithium enrichment mechanisms in aquifers in the Benue Trough. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2389. https://doi.org/10.46481/jnsps.2025.2389

How to Cite

Comparative analysis of lithium enrichment mechanisms in aquifers in the Benue Trough. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2389. https://doi.org/10.46481/jnsps.2025.2389