Comprehensive study of photon and proton interactions to interpret the radiation parameters of boron derivative drugs for chemoradiotherapy

Authors

  • A. M. Olaosun Department of Physics and Science Laboratory Technology, Abiola Ajimobi Technical University, P.M.B. 5015, Ibadan, Oyo State, Nigeria https://orcid.org/0000-0002-8995-1202
  • C. A. Aborisade Department of Physics and Science Laboratory Technology, Abiola Ajimobi Technical University, P.M.B. 5015, Ibadan, Oyo State, Nigeria https://orcid.org/0009-0002-1769-4013
  • D. E. Shian The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem, ISRAEL 91120 https://orcid.org/0000-0003-3103-6391
  • P. T. Osuolale Department of Information Systems and Technology, Kings University, Odeomu, Osun-State, Nigeria

Keywords:

Boron derivative drugs, Chemoradiotherapy, Radiation parameter, Effective atomic number

Abstract

 For chemoradiotherapy applications, this work investigated the photon and proton interaction parameters in five boron-based medications: sodium borocaptate, bortezomib, delanzomib, boronophenylalanine, and boric acid. Photon interaction parameters such as the mass attenuation coefficient, effective atomic number, effective electron density, and buildup variables were computed. The effective atomic number and stopping power for proton interactions were determined by calculating mass stopping cross-sections, which allowed for the computation of the effective electron density. Below 0.1 MeV, the highest value of mass attenuation coefficient and effective atomic number was found for sodium borocaptate and boric acid, respectively. Among the medications, boric acid had the highest effective atomic number for proton interactions. Both photon and proton interactions showed a direct correlation between electron density and effective atomic number. In the areas where medication variations were most noticeable, bortezomib showed the highest values for buildup factors. The mass stopping power and mass stopping cross-section peaked at about 0.1 MeV, with delanzomib and bortezomib exhibiting especially high values at lower energies. This study is expected to provide understanding about the radiation interaction parameters of the investigated boron derivative drugs, which will in turn guide their administration and effectiveness in enhancing photon and proton radiations for chemoradiotherapy purposes.

Dimensions

[1] M. Salawu, J. Gbolahan & A. Alabi, “Assessment of radiation shielding properties of polymer-lead (II) oxide composites”, Journal of the Nigerian Society of Physical Sciences 3 (2021) 423. https://doi.org/10.46481/jnsps.2021.249

[2] A. Anasthesia, U. Ibrahim, S. Yusuf, D. Joseph, N. Flavious, M. Sidi, S. Shem, A. Mundi, A. Dare & D. Joseph, “Diagnostic reference levels (DRLs) and image quality evaluation for digital mammography in a Nigerian facility”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 281. https://doi.org/10.46481/jnsps.2022.734

[3] I. Thierry-Chef, E. Cardis, J. Damilakis, G. Frija, M. Hierath & C. Hoeschen, “Medical applications of ionizing radiation and radiation protection for European patients, population and environment”, EPJ Nuclear Science & Technology 8 (2022) 44. https://doi.org/10.1051/epjn/2022044

[4] G. F. Soko, A. B. Burambo, M. M. Mngoya & B. A. Abdul, “Public awareness and perceptions of radiotherapy and their influence on the use of radiotherapy in Dar es Salaam, Tanzania”, Journal of Global Oncology 5 (2019) 1. https://doi.org/10.1200/JGO.19.00175

[5] M. Abdel-Wahab, S. S. Gondhowiardjo, A. A. Rosa, Y. Lievens, N. ElHaj, J. A. Polo Rubio, G. B. Prajogi, H. Helgadottir, E. Zubizarreta & A. Meghzifene, “Global radiotherapy: Current status and future directions— white paper”, JCO Global Oncology 7 (2021) 827. https://doi.org/10.1200/GO.21.00029.

[6] J.-s. Wang, H.-j. Wang & H.-l. Qian, “Biological effects of radiation on cancer cells”, Military Medical Research 5 (2018) 1. https://doi.org/10.1186/s40779-018-0167-4.

[7] N. Behranvand, F. Nasri, R. Zolfaghari Emameh, P. Khani, A. Hosseini, J. Garssen & R. Falak, “Chemotherapy: a double-edged sword in cancer treatment”, Cancer Immunology, Immunotherapy 71 (2022) 507. https://doi.org/10.1007/s00262-021-03013-3.

[8] M. Buy¨ uky–ld–z & M. T ¨ uremis¸, “Radiological properties of some chemotherapy drugs for electron, proton and carbon ion interactions in the energy region 10 keV–400 MeV”, Celal Bayar University Journal of Science 19 (2023) 143. https://doi.org/10.18466/cbayarfbe.1140327.

[9] A. Mostafa, M. Uosif, S. A. Issa, M. Zhukovsky, Z. Alrowaili & H. M. Zakaly, “Evaluation of photon, proton, and alpha interaction parameters of EDTMPLu and MDPLu medications used for some bone cancer”, Radi ation Physics and Chemistry 216 (2024) 111419. https://doi.org/10.1016/j.radphyschem.2023.111419.

[10] T. Tugrul, “Investigation of mass attenuation coefficients, effective atomic numbers, and effective electron density for some molecules: study on chemotherapy drugs”, Journal of Radiation Research and Applied Sci ences 13 (2020) 758. https://doi.org/10.1080/16878507.2020.1838040.

[11] B. Aygun & A. Karabulut, “The interaction of neutron and gamma radiation with some cancer drug effect ingredients”, Eastern Anatolian Journal of Science 6 (2020) 35. https://dergipark.org.tr/en/pub/eajs/issue/58365/788403.

[12] E. Kavaz, N. Ahmadishadbad & Y. Ozdemir, “Photon buildup factors of some chemotherapy drugs”, Biomed. Pharmacother. 69 (2015) 34. https://doi.org/10.1016/j.biopha.2014.10.031.

[13] I. C¸ aglar & G. B. Cengiz, “Evaluation of radiation attenuation properties of some cancer drugs”, Ad–yaman University Journal of Science 11 (2021) 503. https://doi.org/10.37094/adyujsci.979888.

[14] F. Akman & M. R. Kac¸al, “Investigation of radiation attenuation parameters of some drugs used in chemotherapy in wide energy region”, Journal of Radiology and Oncology 2 (2018) 047. https://doi.org/10.29328/journal.jro.1001021.

[15] N. Y. Yorgun & E. Kavaz, “Gamma photon protection properties of some cancer drugs for medical applications”, Results in Physics 13 (2019) 102150. https://doi.org/10.1016/j.rinp.2019.02.086.

[16] G. S. Kanberoglu, B. Oto & S. E. Gulebaglan, “Gamma shielding properties of Tamoxifen drug”, AIP Conference Proceedings 1815 (2017) 010007. https://doi.org/10.1063/1.4976496.

[17] I. C¸ aglar, “A review on the gamma ray attenuation behaviours of some chemotherapy drugs used in cancer treatment”, in Research on environmental radioactivity, G. B. Cengiz (Ed.), Livre de Lyon, Lyon, France, 2023, pp. 79–91. https://doi.org/10.5281/zenodo.10442949.

[18] A. M. Olaosun & D. E. Shian, “Comprehensive radiological parameterizations of proton and alpha particle interactions for some selected biomolecules: theoretical computation”, Radiation. Effects and Defects in Solids 178 (2023) 1109. https://doi.org/10.1080/10420150.2023.2222329.

[19] A. M. Olaosun & D. O. Olaiya, “Elemental characterization and radiation parameters of malignant and healthy breast tissues”, Journal of Trace Elements and Minerals 2 (2022) 100023. https://doi.org/10.1016/j.jtemin.2022.100023.

[20] S. Manohara, S. Hanagodimath & L. Gerward, “Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics”, Journal of Applied Clinical Medical Physics 12 (2011) 296. https://doi.org/10.1120/jacmp.v12i4.3557.

[21] O. Kadri & A. Alfuraih, “Photon energy absorption and exposure buildup factors for deep penetration in human tissues”, Nuclear Science and Techniques 30 (2019) 176. https://doi.org/10.1007/s41365-019-0701-4.

[22] N. A. Alsaif, Y. Elmahroug, B. M. Alotaibi, H. A. Alyousef, N. Rekik, A. W. M. Hussein, R. Chand & U. Farooq, “Calculating photon buildup factors in determining the ?-ray shielding effectiveness of some materials susceptible to be used for the conception of neutrons and ?-ray shielding”, Journal of Materials Research and Technology 11 (2021) 769. https://doi.org/10.1016/j.jmrt.2021.01.052.

[23] A. S. Almutairi & K. T. Osman, “Mass stopping power and range of pro tons in biological human body tissues (ovary, lung and breast)”, International Journal of Medical Physics, Clinical Engineering and Radiation Oncology 11 (2021) 48. https://doi.org/10.4236/ijmpcero.2022.111005.

[24] S. Prabhu, S. Jayaram, B. Bubbly & S. Gudennavar, “A simple software for swift computation of photon and charged particle interaction pa rameters: PAGEX”, Applied Radiation and Isotopes 176 (2021) 109903. https://doi.org/10.1016/j.apradiso.2021.109903.

[25] V. Bregadze, I. Sivaev & S. Glazun, “Polyhedral boron compounds as potential diagnostic and therapeutic antitumor agents”, Anti-Cancer Agents in Medicinal Chemistry 6 (2006) 75. https://doi.org/10.2174/187152006776119180.

[26] M. K. Gunduz, M. Bolat, G. Kaymak, D. Berikten, D. A. Kose, “Therapeutic effects of newly synthesized boron compounds (BGM and BGD) on hepatocellular carcinoma”, Biological Trace Element Research 200 (2022) 134. https://doi.org/10.1007/s12011-021-02647-9.

[27] E. Meiyanto, R. A. Susidarti, R. I. Jenie, R. Y. Utomo, D. Novitasari, F. Wulandari & M. Kirihata, “Synthesis of new boron containing compound (CCB-2) based on curcumin structure and its cytotoxic effect against can cer cells”, Journal of Applied Pharmaceutical Science 10 (2020) 060. https://doi.org/10.7324/JAPS.2020.102010.

[28] E. Cebeci, B. Yuksel & F. S¸ahin, “Anti-cancer e ¨ ffect of boron derivatives on small-cell lung cancer”, Journal of Trace Elements in Medicine and Biology 70 (2022) 126923. https://doi.org/10.1016/j.jtemb.2022.126923.

[29] G. J. Kubicek, R. S. Axelrod, M. Machtay, P. H. Ahn, P. R. Anne, S. Fogh, D. Cognetti, T. J. Myers, W. J. Curran Jr & A. P. Dicker, “Phase I trial using the proteasome inhibitor bortezomib and concur rent chemoradiotherapy for head-and-neck malignancies”, International Journal of Radiation Oncology, Biology, Physics 83 (2012) 1192. https://doi.org/10.1016/j.ijrobp.2011.09.023.

[30] R. M. Eager, C. C. Cunningham, N. N. Senzer, J. Stephenson, S. P. Anthony, S. J. O’Day, G. Frenette, A. C. Pavlick, B. Jones & M. Uprichard, “Phase II assessment of talabostat and cisplatin in second-line stage IV melanoma”, BMC Cancer 9 (2009) 263. https://doi.org/10.1186/1471-2407-9-263.

[31] K. Narra, S. R. Mullins, H.-O. Lee, B. Strzemkowski-Brun, K. Maga long, V. J. Christiansen, P. A. McKee, B. Egleston, S. J. Cohen & L. M. Weiner, “Phase II trial of single agent Val-boroPro (Talabostat) inhibiting Fibroblast Activation Protein in patients with metastatic colorectal cancer”, Cancer biology & therapy 6 (2007) 1691. https://doi.org/10.4161/cbt.6.11.4874.

[32] R. Eager, C. Cunningham, N. Senzer, D. Richards, R. Raju, B. Jones, M. Uprichard & J. Nemunaitis, “Phase II trial of talabostat and docetaxel in advanced non-small cell lung cancer”, Clinical Oncology 21 (2009) 464. https://doi.org/10.1016/j.clon.2009.04.007.

[33] A. C¸ . Gundo ¨ gdu, N. S. Ar–, A. H ? obel, G. S¸enol, ¨ O. Eldiven & F. Kar, “Boric acid exhibits anticancer properties in human endometrial cancer Ishikawa cells”, Cureus 15 (2023) e44277. https://doi.org/10.7759/cureus.44277.

[34] E. Kahraman & E. Goker, “Boric acid exerts anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway”, Journal of Trace Elements in Medicine and Biology 73 (2022) 127043. https://doi.org/10.1016/j.jtemb.2022.127043.

[35] M. Wang, L. Liang, J. Lu, Y. Yu, Y. Zhao, Z. Shi, H. Li, X. Xu, Y. Yan & Y. Niu, “Delanzomib, a novel proteasome inhibitor, sensitizes breast cancer cells to doxorubicin-induced apoptosis”, Thoracic Cancer 10 (2019) 918. https://doi.org/10.1111/1759-7714.13030.

[36] K. Y. Guo, L. Han, X. Li, A. V. Yang, J. Lu, S. Guan, H. Li, Y. Yu, Y. Zhao & J. Yang, “Novel proteasome inhibitor delanzomib sensitizes cervical cancer cells to doxorubicin-induced apoptosis via stabilizing tumor suppressor proteins in the p53 pathway”, Oncotarget 8 (2017) 114123. https://doi.org/10.18632/oncotarget.23166.

[37] P. Blaha, C. Feoli, S. Agosteo, M. P. Cammarata, R. Catalano, M. Ciocca, G. A. P. Cirrone, V. Conte & G. Cuttone, “The proton-boron reaction increases the radiobiological effectiveness of clinical low-and high-energy proton beams: novel experimental evidence and perspectives”, Frontiers in Oncology 11 (2021) 682647. https://doi.org/10.3389/fonc.2021.682647.

[38] C. Van Waes, A. A. Chang, P. F. Lebowitz, C. H. Druzgal, Z. Chen, Y. A. Elsayed, J. B. Sunwoo, S. F. Rudy, J. C. Morris & J. B. Mitchell, “Inhibition of nuclear factor-?B and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma”, International Journal of Radiation Oncology, Biology, Physics 63 (2005) 1400. https://doi.org/10.1016/j.ijrobp.2005.05.007.

[39] R. Mohan & D. Grosshans, “Proton therapy–present and future”, Advanced Drug Delivery Reviews 109 (2017) 26. https://doi.org/10.1016/j.addr.2016.11.006.

[40] J. M. Ryckman, V. Ganesan, A. Kusi Appiah, C. Zhang & V. Verma, “National practice patterns of proton versus photon therapy in the treatment of adult patients with primary brain tumors in the United States”, Acta Oncologica. 58 (2019) 66. https://doi.org/10.1080/0284186X.2018.1512755.

[41] Z. Chen, M. M. Dominello, M. C. Joiner & J. W. Burmeister, “Proton versus photon radiation therapy: A clinical review”, Frontiers in Oncology 13 (2023) 1133909. https://doi.org/10.3389/fonc.2023.1133909.

[42] N. H. Tran, T. Shtam, Y. Y. Marchenko, A. L. Konevega & D. Lebedev, “Current state and prospectives for proton boron capture therapy”, Biomedicines 11 (2023) 1727. https://doi.org/10.3390/biomedicines11061727.

[43] G. Cirrone, L. Manti, D. Margarone, G. Petringa, L. Giuffrida, A. Minopoli, A. Picciotto, G. Russo, F. Cammarata & P. Pisciotta, “First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness,” Scientific Reports 8 (2018) 1141. https://doi.org/10.1038/s41598-018-19258-5.

[44] I. N. Zavestovskaya, A. L. Popov, D. D. Kolmanovich, G. V. Tikhonowski, A. I. Pastukhov, M. S. Savinov, P. V. Shakhov, J. S. Babkova, A. A. Popov & I. V. Zelepukin, “Boron nanoparticle-enhanced proton therapy for cancer treatment”, Nanomaterials 13 (2023) 2167. https://doi.org/10.3390/nano13152167.

[45] L. Gerward, N. Guilbert, K. B. Jensen & H. Levring, “WinXCom—a program for calculating X-ray attenuation coefficients”, Radiation Physics and Chemistry 71 (2004) 653. https://doi.org/10.1016/j.radphyschem.2004.04.040.

[46] M. Berger, ESTAR, PSTAR, ASTAR. A PC Package for Calculating Stopping Powers and Ranges of Electrons, Protons and Helium Ions, Version 2 (International Atomic Energy Agency, Vienna, 1993). https://inis.iaea.org/records/pf2sy-yag85.

[47] U. Akbaba, E. S¸akar, M. Sayyed, B. Alim & O. F. ¨ Ozpolat, “Evaluation of photon interaction parameters of Anti-HIV drugs”, Radiation Physics and Chemistry 201 (2022) 110441. https://doi.org/10.1016/j.radphyschem. 2022.110441.

[48] R. Hill, B. Healy, L. Holloway, Z. Kuncic, D. Thwaites & C. Baldock, “Advances in kilovoltage x-ray beam dosimetry”, Physics in Medicine & Biology 59 (2014) R183. https://doi.org/10.1088/0031-9155/59/6/R183.

[49] E. B. Podgorsak, “Treatment Machines for External Beam Radiotherapy”, in Radiation Oncology Physics: A Handbook for Teachers and Students, E. B. Podgorsak (Ed.), International Atomic Energy Agency, Vienna, Austria, 2005, pp. 123–160. https://www.osti.gov/etdeweb/biblio/20628272.

[50] E. K. Hansen & M. Roach, Handbook of Evidence-Based Radiation Oncology, Springer, Cham, Switzerland, 2018, pp. 1–969. https://doi.org/10.1007/978-3-319-62642-0.

[51] K. A. Camphausen and R. C. Lawrence, “Principles of radiation therapy”, in Cancer management: a multidisciplinary approach, R. Pazdur, L. R. Coia, W. J. Hoskins, & L. D. Wagman (Eds.), CMP Medica, New York, USA, 2008, pp. 221–230. IOS Press, Amsterdam and Springer, Dordrecht, Netherlands, 2008, pp. 221–230. https://thymic.org/wp-content/uploads/2021/05/Radiation-Principles.pdf.

[52] Y. Lemoigne and A. Caner, Radiotherapy and Brachytherapy, IOS Press, Amsterdam and Springer, Dordrecht, Netherlands, 2009, pp. 1–239. https: //doi.org/10.1007/978-90-481-3097-9.

[53] M. Kurudirek & T. Onaran, “Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions”, Radiation Physics and Chemistry 112 (2015) 125. https://doi.org/10.1016/j.radphyschem.2015.03.034.

[54] A. Bozkurt, “Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies”, EPJ Web of Conferences, 154 (2017) 01007. https://doi.org/10.1051/epjconf/201715401007.

[55] M. Usta & M. C¸ . Tufan, “Stopping power and range calculations in human tissues by using the Hartree-Fock-Roothaan wave functions”, Radiation Physics and Chemistry 140 (2017) 43. https://doi.org/10.1016/j.radphyschem.2017.03.005.

[56] R. Mohan, “A review of proton therapy–Current status and future directions”, Precision Radiation Oncology 6 (2022) 164. https://doi.org/10.1002/pro6.1149.

Variation of mass attenuation coefficient (µ/?) of drugs with energy for photon interaction.

Published

2025-05-01

How to Cite

Comprehensive study of photon and proton interactions to interpret the radiation parameters of boron derivative drugs for chemoradiotherapy. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2503. https://doi.org/10.46481/jnsps.2025.2503

Issue

Section

Physics & Astronomy

How to Cite

Comprehensive study of photon and proton interactions to interpret the radiation parameters of boron derivative drugs for chemoradiotherapy. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2503. https://doi.org/10.46481/jnsps.2025.2503