Sustainable remediation of vancomycin polluted water using pyrolysis biochar of pressed oil palm fruit fibre
Authors
- Abiodun Oluwatosin Adeoye Department of Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria https://orcid.org/0000-0003-4696-1045
- Rukayat Oluwatobiloba Quadri Department of Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
- Olayide Samuel Lawal Department of Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
Keywords:
Pyrolysis, Biochar, Antibiotics, Adsorption, PollutionAbstract
Pharmaceutical effluents, especially antibiotics, have significantly contributed to aquatic pollution in recent times, which has called for a sustainable approach to their removal. Adsorption is an efficient process to remove antibiotics from water via the use of materials that could adhere to pollutants and enhance extraction. This study investigated the efficiency of the solid pyrolysis product of pressed palm oil fruit fibre by varying pH and temperature on the removal of vancomycin from water. The following models were used to describe the adsorption kinetics: pseudo-first order, pseudo-second order, Avrami, Elovich, and intraparticle diffusion model, while Temkin, Langmuir, Dubinin Radushkevich (D-R), and Freundlich were used to describe the isotherm. The highest value of the correlation coefficient (R2) of 0.985 was obtained for the pseudo-first order kinetics model. At 40 oC, the correlation coefficients R² were 0.953, 0.995, 0.967, and 0.940 for Temkim, D-R, Langmuir, and Freundlich, respectively. The obtained ranges for standard Gibb’s free energy (\Delta Go) > -28.94 kJ/mol and the standard entropy (\Delta So) > 0 demonstrate that the adsorption of vancomycin is favourable and spontaneous. The adsorption process was mainly via a physical process, spontaneous and exothermic, since the standard enthalpy (\Delta Ho) is -13.92 kJ/mol. The maximum adsorption capacity at 40 oC using the Langmuir isotherm is 3.902 mg/g. The material is a potentially cheap, eco-friendly method for remediating vancomycin from water.
Author Biographies
Abiodun Oluwatosin Adeoye, Department of Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
Industrial Chemistry
Ph.D
Rukayat Oluwatobiloba Quadri, Department of Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
Industrial Chemistry
Ph.D
Olayide Samuel Lawal, Department of Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
Industrial Chemistry
Professor
[1] X. Chang, M. T. Meyer, X. Liu, Q. Zhao, H. Chen, J. Chen, Z. Qiu, L. Yang, J. Cao & W. Shu, “Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China”, Environmental Pollution 158 (2010) 1444. https://doi.org/10.1016/j.envpol.2009.12.034.
[2] N. Alavi, A. A. Babaei, M. Shirmardi, A. Naimabadi & G. Goudarzi, “Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province, Iran”, Environmental Science and Pollution Research 22 (2015) 17948. https://doi.org/10.1007/s11356-015-5002-9.
[3] M. I. Hutchings, A. W. Truman & B. Wilkinson, “Antibiotics: past, present and future”, Current Opinion in Microbiology 51 (2019) 72. https://doi.org/10.1016/j.mib.2019.10.008.
[4] L. Serwecinska, “Antimicrobials and antibiotic-resistant bacteria: a risk´ to the environment and to public health”, Water 12 (2020) 3313. https://doi.org/10.3390/w12123313.
[5] A. Saravanan, P. S. Kumar, S. Jeevanantham, S. Karishma, B. Tajsabreen, P. Yaashikaa & B. Reshma, “Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development”, Chemosphere 280 (2021) 130595. https://doi.org/10.1016/j.chemosphere.2021.130595.
[6] T. C. M. Vinh Do, D. Q. Nguyen, T. D. Nguyen & P. H. Le, “Development and Validation of a LC-MS/MS Method for Determination of Multi-Class Antibiotic Residues in Aquaculture and River Waters, and Photocatalytic Degradation of Antibiotics by TiO2 Nanomaterials”, Catalysts 10 (2020) 356. https://doi.org/10.3390/catal10030356.
[7] C. Monahan, R. Nag, D. Morris & E. Cummins, “Antibiotic residues in the aquatic environment – current perspective and risk considerations”, Journal of Environmental Science and Health Part A 56 (2021) 733. https://doi.org/10.1080/10934529.2021.1923311.
[8] R. Selvarajan, C. Obize, T. Sibanda, A. L. K. Abia & H. Long, “Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance”, Antibiotics 12 (2022) 28. https://doi.org/10.3390/antibiotics12010028.
[9] V. M. Pathak, V. K. Verma, B. S. Rawat, B. Kaur, N. Babu, A. Sharma, S. Dewali, M. Yadav, R. Kumari, S. Singh, A. Mohapatra, V. Pandey, N. Rana & J. M. Cunill, “Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review”, Frontiers in Microbiology 13 (2022) 962619. https://doi.org/10.3389/fmicb.2022.962619.
[10] S. Khan, Mu. Naushad, M. Govarthanan, J. Iqbal & S. M. Alfadul, “Emerging contaminants of high concern for the environment: Current trends and future research”, Environmental Research 207 (2021) 112609. https://doi.org/10.1016/j.envres.2021.112609.
[11] R. Changotra, A. Chalotra & H. Rajput, “Antibiotics and resistance in environment”, in Emerging Modalities in Mitigation of Antimicrobial Resistance, Akhtar, N., Singh, K. S., Prerna, Goyal, D. (eds), Springer, Cham. Switzerland, AG, 2022, pp. 23–46. http://dx.doi.org/10.1007/978-3-030-84126-3_2.
[12] D. S. Read, H. S. Gweon, M. J. Bowes, M. F. Anjum, D. W. Crook, K. K. Chau, L. P. Shaw, A. Hubbard, M. AbuOun, H. J. Tipper, S. J. Hoosdally, M. J. Bailey, A. S. Walker & N. Stoesser, “Dissemination and Persistence of Antimicrobial Resistance (AMR) along the wastewater-river continuum”, Water Research 264 (2024) 122204. https://doi.org/10.1016/j.watres.2024.122204.
[13] A. Singh, S. Saluja, “Microbial degradation of antibiotics from effluents”, in Recent Advances in Microbial Degradation, Environmental and Microbial Biotechnology, Springer, Singapore, 2021, pp. 389–404. https://link.springer.com/chapter/10.1007/978-981-16-0518-5_15.
[14] A. Alengebawy, S. T. Abdelkhalek, S. R. Qureshi & M.-Q. Wang, “Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications”, Toxics 9 (2021) 42. https://doi.org/10.3390/toxics9030042.
[15] E. S. Okeke, K. I. Chukwudozie, R. Nyaruaba, R. E. Ita, A. Oladipo, O. Ejeromedoghene, E. O. Atakpa, C. V. Agu & C. O. Okoye, “Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management”, Environmental Science and Pollution Research 29 (2022) 69241. https://doi.org/10.1007/s11356-022-22319-y.
[16] S. Squadrone, “Water environments: metal-tolerant and antibioticresistant bacteria”, Environmental Monitoring and Assessment 192 (2020) 238. https://doi.org/10.1007/s10661-020-8191-8.
[17] E. Felis, J. Kalka, A. Sochacki, K. Kowalska, S. Bajkacz, M. Harnisz & E. Korzeniewska, “Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications”, European Journal of Pharmacology 866 (2019) 172813. https://doi.org/10.1016/j.ejphar.2019.172813.
[18] M. M. Jacob, M. Ponnuchamy, A. Kapoor, D. B. Pal & P. Sivaraman, “Biochar innovations for adsorption of water contaminants in water treatment”, in Clean Energy Production Technologies, springer, Singapore, 2024, 183–201. https://doi.org/10.1007/978-981-97-0847-5_9.
[19] B. Chen, D. Zhou & L. Zhu, “Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures”, Environmental Science & Technology 42 (2008) 5137. https://doi.org/10.1021/es8002684.
[20] L. A. Abudu, H. R. Sadabad, T. Oluseyi, D. Adeyemi, L. A. Adams & H. M. Coleman, Removal of vancomycin from water by adsorption using waste materials, Masters thesis, Ulster University, Ulster, 2023. https://pure.ulster.ac.uk/en/publications/removal-of-vancomycin-from-water-by-adsorption-using-waste-materi.
[21] J. Hollis. “The development and characterization of a vancomycin nanostructured lipid carrier and evaluation of their antimicrobial properties on Staphylococcus aureus”, Masters thesis, University of Central Lancashire, Preston, Lancashire, 2024. http://doi.org/10.17030/uclan.thesis.00052737.
[22] M. Barathan, S.-L. Ng, Y. Lokanathan, M. H. Ng & J. X. Law, “Unseen weapons: bacterial extracellular vesicles and the spread of antibiotic resistance in aquatic environments”, International Journal of Molecular Sciences 25 (2024) 3080. https://doi.org/10.3390/ijms25063080.
[23] X. Q. Cheng, C. Zhang, Z. X. Wang & L. Shao, “Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification”, Journal of Membrane Science 499 (2015) 326. https://doi.org/10.1016/j.memsci.2015.10.060.
[24] L. Xu, J. Dai, J. Pan, X. Li, P. Huo, Y. Yan, X. Zou & R. Zhang, “Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics”, Chemical Engineering Journal 174 (2011) 221. https://doi.org/10.1016/j.cej.2011.09.003.
[25] Z. Bai, Q. Yang & J. Wang, “Catalytic ozonation of sulfamethazine antibiotics using Ce0.1 Fe0.9OOH: Catalyst preparation and performance”, Chemosphere 161 (2016) 174. https://doi.org/10.1016/j.chemosphere.2016.07.012.
[26] N. F. Moreira, J. M. Sousa, G. Macedo, A. R. Ribeiro, L. Barreiros, M. Pedrosa, J. L. Faria, M. F. R. Pereira, S. Castro-Silva, M. A. Segundo, C. M. Manaia, O. C. Nunes & A. M. Silva, “Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity”, Water Research 94 (2016) 10. https://doi.org/10.1016/j.watres.2016.02.003.
[27] H. Niu, N. Dizhang, Z. Meng & Y. Cai, “Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles”, Journal of Hazardous Materials 227 (2012) 195. https://doi.org/10.1016/j.jhazmat.2012.05.036.
[28] J. A. De Lima Perini, M. Perez-Moya & R. F. P. Nogueira, “Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH”, Journal of Photochemistry and Photobiology a Chemistry 259 (2013) 53. https://doi.org/10.1016/j.jphotochem.2013.03.002.
[29] L. Demarchis, M. Minella, R. Nistico, V. Maurino, C. Minero & D. Vione,` “Photo–Fenton reaction in the presence of morphologically controlled hematite as iron source”, Journal of Photochemistry and Photobiology a Chemistry 307 (2015) 99. https://doi.org/10.1016/j.jphotochem.2015.04.009.
[30] M. S. D´?az-Cruz & D. Barcelo, “LC–MS2 trace analysis of antimicrobials´ in water, sediment and soil”, TrAC Trends in Analytical Chemistry 24 (2005) 645. https://doi.org/10.1016/j.trac.2005.05.005.
[31] A. Gobel, A. Thomsen, C. S. McArdell, A. Joss & W. Giger, “Occur-¨ rence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment”, Environmental Science & Technology 39 (2005) 3981. https://doi.org/10.1021/es048550a.
[32] K. Li, A. Yediler, M. Yang, S. Schulte-Hostede & M. H. Wong, “Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products”, Chemosphere 72 (2008) 473. https://doi.org/10.1016/j.chemosphere.2008.02.008.
[33] A. G. Trovo, R. F. P. Nogueira, A. Aguera, A.R. Fernandez-Alba &¨ S. Malato, “Degradation of the antibiotic amoxicillin by photo Fenton process–chemical and toxicological assessment”, Water Resource 45 (2011) 1394. https://doi.org/10.1016/j.watres.2010.10.029.
[34] A. Gulkowska, H. Leung, M. So, S. Taniyasu, N. Yamashita, L. W. Yeung, B. J. Richardson, A. Lei, J. Giesy & P. K. Lam, “Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China”, Water Research 42 (2007) 395. https://doi.org/10.1016/j.watres.2007.07.031.
[35] S. Lenore, E. Arnold & D. Andrew, “Standard methods for the examination of water and wastewater”, American Public Health Association, Washington, DC, 1998, pp. 212–234. https://search.worldcat.org/title/Standard-methods-for-the-examination-of-water-and-wastewater/oclc/40733179.
[36] A. A. Babaei, Z. Alaee, E. Ahmadpour & A. Ramazanpour-Esfahani, “Kinetic modeling of methylene blue adsorption onto acid-activated spent tea: A comparison between linear and non-linear regression analysis”, Journal of Advances in Environmental Health Research 2 (2014) 197. https://doi.org/10.22102/jaehr.2014.40170.
[37] M. S. Legnoverde, S. Simonetti & E. I. Basaldella, “Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: Theoretical and experimental study”, Applied Surface Science 300 (2014) 37. https://doi.org/10.1016/j.apsusc.2014.01.198.
[38] H. R. Pouretedal & N. Sadegh, “Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood”, Journal of Water Process Engineering 1 (2014) 64. https://doi.org/10.1016/j.jwpe.2014.03.006.
[39] Y. Jia, Y. Ou, S. K. Khanal, L. Sun, W.-S. Shu & H. Lu, “Biocharbased strategies for antibiotics removal: mechanisms, factors, and application”, ACS ES&T Engineering 4 (2024) 1256. https://doi.org/10.1021/acsestengg.3c00605.
[40] A. K. Patel, R. Katiyar, C. Chen, R. R. Singhania, M. K. Awasthi, S. Bhatia, T. Bhaskar & C. Dong, “Antibiotic bioremediation by new generation biochar: Recent updates”, Bioresource Technology 358 (2022) 127384. https://doi.org/10.1016/j.biortech.2022.127384.
[41] R. Katiyar, C. Chen, R. R. Singhania, M. Tsai, G. D. Saratale, A. Pandey, C. Dong & A. K. Patel, “Efficient remediation of antibiotic pollutants from the environment by innovative biochar: current updates and prospects”, Bioengineered 13 (2022) 14730. https://doi.org/10.1080/21655979.2022.2108564.
[42] M. Pan, “Biochar adsorption of antibiotics and its implications to remediation of contaminated soil”, Water Air & Soil Pollution 231 (2020) 221. https://doi.org/10.1007/s11270-020-04551-9.
[43] A. O Adeoye, R. O. Quadri & O. S. Lawal, “Fixed-bed pyrolysis and thermal analyses of pressed oil palm fruit fiber as a potential alternative energy”, FUOYE Journal of Innovation Science and Technology 2 (2022) 1. https://jist.fuoye.edu.ng/index.php/jist/article/view/46.
[44] A. O. Adeoye, R. O. Quadri & O. S. Lawal, “Assessment of biofuel potential of tenera palm kernel shell via fixed bed pyrolysis and thermal characterization”, Results in Surfaces and Interfaces 9 (2022) 100091. https://doi.org/10.1016/j.rsurfi.2022.100091.
[45] E. C. Okoroigwe, C.M. Saffron & P. D. Kamdem, “Characterization of palm kernel shell for materials reinforcement and water treatment”, Journal of Chemical Engineering and Materials Science 5 (2014) 1. http://dx.doi.org/10.5897/JCEMS2014.0172.
[46] A. Shaaban, S.-M. Se, N. M. M. Mitan & M. F. Dimin, “Characterization of Biochar Derived from Rubber Wood Sawdust through Slow Pyrolysis on Surface Porosities and Functional Groups”, Procedia Engineering 68 (2013) 365. https://doi.org/10.1016/j.proeng.2013.12.193.
[47] Y. Dong, J. E. Z. Liang, J. Song, C. Liu, Z. Ding, W. Wang & W. Zhang, “Preparation of biochar/iron mineral composites and their adsorption of methyl orange”, RSC Advances 14 (2024) 33977. https://doi.org/10.1039/d4ra05529b.
[48] M. a. A. Masud, W. S. Shin, A. Sarker, A. Septian, K. Das, K., D. M. Deepo, M. A. Iqbal, A. R. M. T. Islam & G. Malafaia, “A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions”, The Science of the Total Environment 904 (2023) 166813. https://doi.org/10.1016/j.scitotenv.2023.166813.
[49] L. Zhao, W. Zheng, O. Masek, X. Chen, B. Gu, B. K. Sharma & X. Cao,? “Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity”, Journal of Environmental Quality 46 (2017) 393. https://doi.org/10.2134/jeq2016.09.0344.
[50] A. Tomczyk, Z. Soko?owska & P. Boguta, “Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects”, Reviews in Environmental Science and BioTechnology 19 (2020) 191. https://doi.org/10.1007/s11157-020-09523-3.
[51] M. I. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y. S. Ok & X. Cao, “ A review of biochar as a low-cost adsorbent for aqueous heavy metal removal”, Critical Reviews in Environmental Science and Technology 46 (2016) 406. https://doi.org/10.1080/10643389.2015.1096880.
[52] J. Lehmann & S. Joseph, “Biochar for environmental management: science, technology, and implementation”, Routledge, 2015. https://www.routledge.com/Biochar-for-Environmental-ManagementScience-Technology.
[53] M. G. Ghozikali, A. Mohammadpour & R. Dehghanzadeh, “Utilization of Activated Carbon Catalyzed Ozonation (ACCO) for removal of ciprofloxacin and vancomycin from hospital wastewater”, Iranian Journal of Public Health 52 (2023) 1522. https://doi.org/10.18502/ijph.v52i7.13255.
[54] F. Gashtasbi, R. J. Yengejeh & A. A. Babaei, “Adsorption of vancomycin antibiotic from aqueous solution using an activated carbon impregnated magnetite composite”, Desalination and Water Treatment 88 (2017) 286. https://doi.org/10.5004/dwt.2017.21455.
[55] P. Jiao, X. Zhang, Y. Wei & Y. Meng, “Adsorption equilibria, kinetics, and column dynamics of l-tryptophan on mixed-mode resin HD-1”, ACS Omega 7 (2022) 9614. https://doi.org/10.1021/acsomega.1c06960.
[56] J. Wu, H. Wang, H. Shen, C. Shen, Y. Zhu, J. Wu & H. Ran, “Experimental and Kinetic Analysis of H2O on Hg0 Removal by Sorbent Traps in Oxy-combustion Atmosphere”, Industrial & Engineering Chemistry Research 60 (2021) 12200. https://doi.org/10.1021/acs.iecr.1c01636.
[57] M. Taha, A. Elsayed, M. Abbas, H. Fakhry & E. M. Ali, “Bio-sorption of Methyl blue from Synthetic wastewater onto copperzinc oxides Bimetallic Nanoparticles Synthesized by Fusarium oxysporum: Equilibrium isotherms, Kinetic models, Process optimization, and Antibacterial activity”, Egyptian Journal of Chemistry 67 (2023) 513. https://doi.org/10.21608/ejchem.2023.213597.8029.
[58] E. C. Lima, A. R. Cestari & M. A. Adebayo, “Comments on the paper: a critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies”, Desalination and Water Treatment 57 (2015) 19566. https://doi.org/10.1080/19443994.2015.1095129.
[59] W. Zhao, L. Yang, W. Han, C. Gu, Z. Xu, X. Lv & H. Zhang, “Application and evaluation of a modified intraparticle diffusion model for mono-/multiadsorption of chlorobenzene pollutants on biochar”, Journal of Soils and Sediments 24 (2024) 3626. https://doi.org/10.1007/s11368-024-03910-x.
[60] D. AO, “Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk”, IOSR Journal of Applied Chemistry 3 (2012) 38. https://doi.org/10.9790/5736-0313845.
[61] F. Bouhamed, Z. Elouear & J. Bouzid, “Adsorptive removal of copper (II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics”, Journal of the Taiwan Institute of Chemical Engineers 43 (2012) 741. https://doi.org/10.1016/j.jtice.2012.02.011.
[62] Z. F. Akl, “Theoretical and experimental studies on uranium(vi) adsorption using phosphine oxide-coated magnetic nanoadsorbent”, RSC Advances 11 (2021) 39233. https://doi.org/10.1039/d1ra04515f.
[63] A. Ebrahimi, M. Ehteshami & B. Dahrazma, “Biosorption of Cd (II) from aqueous solutions using Crataegus oxyacantha stone and Punica granatum seed”, Desalination and Water Treatment 57 (2015) 9354. https://doi.org/10.1080/19443994.2015.1029005.
[64] B. Delmond, S. Tretsiakova-McNally, B. Solan, R. McDermott & A. Audoin, “A Sustainable Method to Reduce Vancomycin Concentrations in Water Using Timber Waste”, Water Air & Soil Pollution 234 (2023) 9. https://doi.org/10.1007/s11270-023-06070-9.
[65] Z. Huang, Y. Li, W. Chen, J. Shi, N. Zhang, X. Wang, Z. Li, L. Gao & Y. Zhang, “Modified bentonite adsorption of organic pollutants of dye wastewater”, Materials Chemistry and Physics 202 (2017) 266. https://doi.org/10.1016/j.matchemphys.2017.09.028.
[66] T. J. Al-Musawi, N. Mengelizadeh, M. Taghavi, S. Mohebi & D. Balarak, “Activated carbon derived from Azolla filiculoides fern: a highadsorption-capacity adsorbent for residual ampicillin in pharmaceutical wastewater”, Biomass Conversion and Biorefinery 13 (2021) 12179. https://doi.org/10.1007/s13399-021-01962-4.
[67] H. N. Tran, S.-J. You & H.-P. Chao, “Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study”, Journal of Environmental Chemical Engineering 4 (2016) 2671. https://doi.org/10.1016/j.jece.2016.05.009.
[68] E. C. Lima, M. A. Adebayo, F. M. Machado, “Machado Kinetic and´ Equilibrium Models of Adsorption”, In: Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, C. Bergmann, F. Machado, (eds), Carbon Nanostructures, Springer, Cham. 2015, pp. 33– 69. https://doi.org/10.1007/978-3-319-18875-1_3.
[69] O. Safranin, “dye removal using Senna fistula activated biomass: Kinetic, equilibrium and thermodynamic studies”, Journal of the Nigerian Society of Physical Sciences 5 (2022) 951. https://doi.org/10.46481/jnsps.2023.951.
[70] E. Kazrafshan, M. Sobhanikia & F. K. Mostafapour, “Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: Thermodynamic, equilibrium and kinetic studies”, Global NEST Journal 19 (2017) 269. https://doi.org/10.30955/gnj.001708.
[71] S. A. Adesokan, A. A. Giwa & I. A. Bello, “Removal of Trimethoprim from Water using Carbonized Wood Waste as Adsorbents”, Journal of the Nigerian Society of Physical Sciences 3 (2021) 344. https://doi.org/10.46481/jnsps.2021.320.

Published
How to Cite
Issue
Section
Copyright (c) 2025 Abiodun Oluwatosin Adeoye, Rukayat Oluwatobiloba Quadri, Olayide Samuel Lawal

This work is licensed under a Creative Commons Attribution 4.0 International License.