Waste glass: An excellent adsorbent for crystal violet dye, Pb2+ and Cd2+ heavy metals ions decontamination from wastewater



  • K. O. Sodeinde Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • S. O. Olusanya Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria.
  • D. U. Momodu Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria.
  • V. F. Enogheghase Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • O. S. Lawal Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria


adsorption, waste glass, heavy metals, crystal violet dye, waste water


The suitability of waste glass as an eco-friendly adsorbent for the removal of crystal violet (CV) dye, Pb2+ and Cd2+ heavy metal ions in waste water samples was investigated in batch mode. Waste glass sample was pulverized and characterized by SEM/EDX, XRD, BET and FTIR. Effects of variation in temperature, pH, contact time and recyclability of the adsorbent were studied. FTIR spectra revealed major peaks around 491.53 and 3444.12 cm-1 corresponding to the bending vibrations of Si-O-Si and -OH groups respectively. SEM/EDX analysis showed a dense, coarse, porous morphology with predominantly silica component. The effective surface area and size of the adsorbent were 557.912 m2/g and 2.099 nm respectively. Increase in temperature, dosage, contact time resulted in increase in adsorption efficiency. Optimum adsorption efficiency of 94%, 97.5% and 89.1% was attained for Pb2+ , Cd2+ ions and CV dye respectively at 70?C. Adsorption process followed more accurately pseudo-first order model and isotherm fitted perfectly into Freundlich model indicating a multilayer adsorption mechanism for CV dye and the heavy metals. 89.87% reduction in Chemical Oxygen Demand (COD) level of wastewater was reported upon treatment with waste glass adsorbent affirming its efficiency for dye and heavy metal pollutants removal.


A. Macfarlane & G. Martin, “A world of glass”, Science 305 (2004) 1407. DOI: https://doi.org/10.1126/science.1093597

I. B. Topcu & M. Canbaz, “Properties of concrete containing waste glass”, Cement and Concrete Research 34 (2004) 267. DOI: https://doi.org/10.1016/j.cemconres.2003.07.003

Z. Hussain, N. Sultan, M. Ali, M. Y. Naz, N. M. AbdEl-Salam, & K. A. Ibrahim, “Thermochemical conversion of waste glass and mollusk shells into an absorbent material for separation of direct Blue 15 azo dye from industrial wastewater”, ACS Omega 5 (2020) 18114. DOI: https://doi.org/10.1021/acsomega.0c01680

M. S. Tsuboy, J. P.F. Angeli, M. S. Mantovani, S. Knasmuller, G. A. Umbuzeiro, & L.R. Ribeiro, “Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2”, Toxicol. In Vitro, 21 (2007) 1650. DOI: https://doi.org/10.1016/j.tiv.2007.06.020

S. Chowdhury, M. A. Mazumder, O. Al-Attas, & T. Hussain, “Heavy metals in drinking water: Occurrences, implication and future needs in developing countries”, Science of the Total Environment 569 (2016) 476. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.166

World Health Organisation (WHO) Guidelines for drinking water quality: Fourth edition Incorporating the first addendum. World Health Organisation, Geneva (2017).

C.O. Aniagor & M. C. Menkiti, “Synthesis, modification and use of lignified bamboo isolate for the renovation of crystal violet dye effluent”, Applied Water Science 9 (2019) 77. DOI: https://doi.org/10.1007/s13201-019-0962-4

O. S. Ayanda, K. O. Sodeinde, P. O. Okolo, A. A. Ajayi, S. M. Nelana, & E. B. Naidoo, “Adsorptive behavior of kaolin for amido black dye in aqueous solution”, Oriental Journal of Chemistry 34 (2018) 1233. DOI: https://doi.org/10.13005/ojc/340305

A. Mittal, J. Mittal, A. Malviya, D. Kaur & V. K. Gupta, “Adsorption of hazardous dye crystal violet from wastewater by waste materials”, Journal of Colloid and Interface Science 343 (2010) 463. DOI: https://doi.org/10.1016/j.jcis.2009.11.060

B. Gozmen, B Kayan, A. M. Gizir & A. Hesenov, “Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods”, J. Hazard. Mater. 168 (2009) 129. DOI: https://doi.org/10.1016/j.jhazmat.2009.02.011

C. C. Chen, H. J. Liao, C. Y. Cheng, C. Y. Yen & Y. C. Chung, “Biodegradation of crystal violet by Pseudomonas putida”, Biotechnol. Lett. 29 (2007) 391. DOI: https://doi.org/10.1007/s10529-006-9265-6

B. Erdem, M. Erdem & A. S. Ozcan, “Adsorption of reactive Black 5 onto quarternized 2-dimethylaminoethyl methacrylate based polymer/clay nanocomposites”, Adsorption 22 (2016) 767. DOI: https://doi.org/10.1007/s10450-016-9773-1

L. Zhang, L. Sellaoui, D. Franco, G. L. Dotto & A. Baiahzar, “Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution onto chitosan: Analytical interpretation via multilayer statistical physics model”, Chemical Engineering Journal 382 (2020) 122952. DOI: https://doi.org/10.1016/j.cej.2019.122952

B. M. Babalola, A. O. Babalola, H. O. Adubiaro, O. S. Ayanda, S. M. Nelana & E. B. Naidoo, “Application of waste Delonix regia pods and leaves for the sorption of Pb (II) ions from aqueous solution: kinetic and equilibrium studies”, Water Quality Research Journal 54 (2019) 278. DOI: https://doi.org/10.2166/wqrj.2019.045

L. Joseph, B. M. Jun, J. R. V. Flora, C. M. Park & Y. Yoon, “Removal of heavy metal from water sources in the developing world using low cost materials: A review”, Chemosphere 229 (2019) 142. DOI: https://doi.org/10.1016/j.chemosphere.2019.04.198

M. Wawrzkiewicz, E. Polska-Adach & Z. Hubicki, “Application of titania based adsorbent for the removal of acid, reactive and direct dyes from textile effluents”, Adsorption 25 (2019) 621. DOI: https://doi.org/10.1007/s10450-019-00062-0

R. Ahmad, “Studies on the adsorption of crystal violet from aqueous solution onto coniferous pinus bark powder”, Journal of Hazardous Materials 171 (2009) 767. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.060

H. A. Hegazi, “Removal of heavy metals from waste water using agricultural and industrial wastes as adsorbent” .HBRC Journal 9 (2013) 276. DOI: https://doi.org/10.1016/j.hbrcj.2013.08.004

W. Au, M. A. Butler, S. E. Bloom & T. S Matney, “Further study of the genetic toxicity of gentian violet”, Mutation Research/Genetic Toxicology 66 (1979) 103. DOI: https://doi.org/10.1016/0165-1218(79)90054-5

O. S. Ayanda, E. A. Odo, D. Malomo, K. O. Sodeinde, O. S. Lawal, O. T. Ebenezer, S. M. Nelana & E. B. Naidoo,“Accelerated decolorization of congo red by powdered termite mound”, CLEAN - Soil, Air, Water 45 (2017) 1700537. DOI: https://doi.org/10.1002/clen.201700537

APHA Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC, USA. (1995).

A. K.. Singh, D. P. Singh, K. K. Pandey & V. N. Singh, “Wollastonite as adsorbent for removal of Fe (II) from water”, J. Chem. Technol. 42 (1988) 29.

Y. S. Ho, “Review of second-order models for adsorption systems”, J. Hazard. Mater. 136 (2006) 681 DOI: https://doi.org/10.1016/j.jhazmat.2005.12.043

T. S. Silva, L. Meili, S. H. V. Carvalho, J. I. Soletti, G. L. Dotto & E. J. S. Fonseca, “Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste”, Environ. Sci. Pollut. Res. Int. 24 (2017) 19927. DOI: https://doi.org/10.1007/s11356-017-9645-6

Letelier, V., B. I. Henriquez-Jara & M. Manosalva, “Combined use of waste concrete and glass as a replacement for mortar raw materials”, Waste Management 94 (2019) 107. DOI: https://doi.org/10.1016/j.wasman.2019.05.041

R. Kumar & R. Ahmad, “Biosorption of hazardous crystal violet from aqueous solution onto treated ginger waste”, Desalination 265 (2011) 112. DOI: https://doi.org/10.1016/j.desal.2010.07.040

C. E. Farias Silva, A. H. Silva Goncalves & A. K. Souza Abud, “Treatment of textile industry effluents using orange waste: a proposal to reduce colour and chemical oxygen demand”, Water Science and Technology 74 (2016) 994. DOI: https://doi.org/10.2166/wst.2016.298

K. Nogawa & T. Kido, “Biological monitoring of cadmium exposure in ita-itai disease epidemiology”, International Archives of Occupational and Environmental Health 65 (1993) S43. DOI: https://doi.org/10.1007/BF00381306

EDX analysis



How to Cite

Sodeinde, K. O., Olusanya, S. O., Momodu, D. U., Enogheghase, V. F., & Lawal, O. S. . (2021). Waste glass: An excellent adsorbent for crystal violet dye, Pb2+ and Cd2+ heavy metals ions decontamination from wastewater. Journal of the Nigerian Society of Physical Sciences, 3(4), 414–422. https://doi.org/10.46481/jnsps.2021.261



Original Research