Methods for the Detection and Remediation of Ammonia from Aquaculture Effluent: A Review

https://doi.org/10.46481/jnsps.2023.854

Authors

  • K. O. Sodeinde Department of Chemistry, Federal University Oye-Ekiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria
  • S. A. Animashaun Department of Chemistry, Federal University Oye-Ekiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria
  • H. O. Adubiaro Department of Chemistry, Federal University Oye-Ekiti, P.M.B. 373, Oye-Ekiti, Ekiti State, Nigeria

Keywords:

Ammonia, Remediation, Biological and chemical methods, Aquaculture effluent

Abstract

Aquaculture practice is growing at an alarming rate in the world due to rising human population and improved agricultural activities. It is a very important sector that is contributing to the food security of various nations, generating employment and foreign exchange earnings for economic development. However, this practice produces large amount of ammonia based effluent thus threatening environmental sustainability. This review focused on the critical assessment of various physicochemical and biological treatments applied in the remediation of ammonia from aquaculture effluent. The physicochemical methods include mainly adsorption, photocatalytic and electrochemical degradation by different materials while the biological methods involve the use of plant biomass, animals and microorganisms. In addition, different detection methods of ammonia and environmental impact of climate change on aquaculture management system were discussed.

Dimensions

A. A. Adewumi, “Aquaculture in Nigeria: Sustainability issues and challenges. Prospects and Problems’’, African Journal of Agricultural Research,(2015) 1281.

M. Clark & D. Tilman, “Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency and food choice”, Environ Res Lett 12 (2017) 064016. DOI: https://doi.org/10.1088/1748-9326/aa6cd5

H. M. Amir, A. Vali & R. Leila, “Atmospheric moisture condensation to water recovery by home airconditioners’’, Am. J. Appl.Sci.10 (2013) 917. DOI: https://doi.org/10.3844/ajassp.2013.917.923

K. Manickavelan, S. Ahmed, K. Mithun, P. Sathish, R. Rajasekaran & N. Sellappan, “A review on transforming plastic wastes into fuel”, J. Nig. Soc. Phys. Sci. 4 (2022) 64-74 DOI: https://doi.org/10.46481/jnsps.2022.364

E. O. Igbinosa & A. I. Okoh, “Impact of discharge wastewater effluents on the physicochemical qualities of a receiving watershed in a typical rural community’’, Int. J. Environ. Sci. Technol. 6 (2009) 175. DOI: https://doi.org/10.1007/BF03327619

M. Abbasi, G. Moussavi & A. Azhdarpoor, “Degradation of organic matter of municipal sewage sludge using ultrasound treatment in Shiraz wastewater treatment plant’’, Health Scope 4 (2015) e23507. DOI: https://doi.org/10.17795/jhealthscope-23507

N. A. Andreas & A. S. Shane, “Wastewater treatment and reuse: past, present, and future’’, Water 7 (2015) 4887. DOI: https://doi.org/10.3390/w7094887

R. Lazzari & B. Baldisserotto, “Nitrogen and phosphorus waste in fish farming’’, B. Inst Pesca 34 (2008) 591.

I. V. Zadinelo, H. J. Alves, A. Moesch, L. M. S. Colpini, L. C. Rosa da Silva & L. D. Santos, :”Influence of the chemical composition of smectites on the removal of ammonium ion from aquaculture effluents’’, J. Mater Sci. 50 (2015) 1865. DOI: https://doi.org/10.1007/s10853-014-8749-3

R. P. Trussel, “The percent un-ionized ammonia in aqueous ammonia solutions at different pH levels and temperatures’’J. Fish Res Board Can.29 (1972)10

S. Sharma, “Bioremediation features, strategies and applications’’, Asian Journal of pharmacy and Life Science 2(2012) 202.

K. O. Sodeinde, S. O. Olusanya, D. U. Momodu, V. F. Enogheghase & O. S. Lawal, “Waste glass: An excellent adsorbent for crystal violet dye, Pb2+ and Cd2+ heavy metal ions decontamination from wastewater”, J. Nig. Soc. Phys. Sci. 3 (2021) 414. DOI: https://doi.org/10.46481/jnsps.2021.261

E. Hendriarianti, K. Kustamar, S. Sudiro & A. Wulandari, “Self purification performance of Brantas riverine east Java from ammonia deoxygeration rate’’, Int. J. of Civil Eng and Tech 9 (2018) 95.

R. P. Trussel, “The percent unionized ammonia in aqueous ammonia solution at different pH levels and temperature’’, J. Fish Res. Board Can. 29 (1972) 1505. DOI: https://doi.org/10.1139/f72-236

C.Sergeant, “The management of ammonia levels in an aquaculture environment’’, Water/Wastewater 2014 www.pollution.solutions-online.com

D. J. Randall & T. K. N. Tsui, “Ammonia toxicity in fish’’, Mar. Pollut Bull. 45 (2002) 17. DOI: https://doi.org/10.1016/S0025-326X(02)00227-8

J. Green, R. Handy and E. Brannon, “Effects of dietary phosphorous and lipid levels on utilization and excretion of phosphorus and nitrogen by rainbow trout (Oncorhynchusmykiss)’’, Aquaculture Nutrition 8 (2002) 291. DOI: https://doi.org/10.1046/j.1365-2095.2002.00217.x

A. Brinker, “Improving the mechanical characteristics of faecal waste in rainbow trout: the influence of fish size and treatment with a non-starch polysaccharide’’, Aquaculture Nutrition 15 (2009) 229. DOI: https://doi.org/10.1111/j.1365-2095.2008.00587.x

C. Wang, T. Wang, Z. Li, X. Xu, X. Zhang & D. Li, “An electrochemical enzyme Biosensor for ammonium detection in aquaculture using screen-printed electrode modified by gold nanoparticle/polymethylene blue’’, Biosensors 11 (2022) 335. https://doi.org/10.3390/bios11090335 DOI: https://doi.org/10.3390/bios11090335

I. D. Twitches & E. B. Eddy, “Sublethal effects of ammonia on freshwater fish” (ed by R. Muller and R. Lloyd), fishing News Book. Blackwell Science, Oxford, London, (1994) 135.

D. D. Loch, J. L. West & D. G. Pealmuttes, “The effect of trout farm effluent on the taxa richness of benthic macro invertebrates’’, Aquaculture 147 (1996) 37. DOI: https://doi.org/10.1016/S0044-8486(96)01394-4

EEA https://www.eea.europa.eu/data-and-maps/indicators/exposure-of-ecosystems-To acidification14/assessment-2 (2020).

D. P. Burea & K. Hua, “Towards effective nutritional management of waste outputs in aquaculture with particular reference to salmonid aquaculture operations’’, Aquaculture Research 41 (2010) 777. DOI: https://doi.org/10.1111/j.1365-2109.2009.02431.x

J. A. Camargo & A. Alonso, “Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystem: a global assessment’’, Environment International 21 (2006) 110.

O. A. Akinrotimi, O. M. G. Abu, I. F. Ibemere & C. A. Opara, “Economic viability and marketing strategies of periwinkle Tympanotonus fuscatus in Rivers State, Nigeria’’, International Journal of Tropical Agriculture and Food systems 3 (2009) 238.

P. Phansi, S. Sumantakul, T. Wongpakdee, N. Fukana, N. Ratanawimarnwong, J. Sitanurak & D. Nacapricha, “Membraneless gas-separation microfluidic paper-based analytical devices for direct quantitation of volatile and non-volatile compounds”, Anal. Chem. 88 (2016) 8749. DOI: https://doi.org/10.1021/acs.analchem.6b02103

X. Bao, S. Liu, W. Song & H. Gao, “Using a PC camera to determine the concentration of nitrite, ammonia nitrogen, sulfide, phosphate, and copper in water’’, Anal.Methods 10 (2018) 2096. DOI: https://doi.org/10.1039/C8AY00312B

L. Zhou & C. E. Boyd, “Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture’’, Aquaculture 450 (2016) 187. DOI: https://doi.org/10.1016/j.aquaculture.2015.07.022

P. L. Searle,`` The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen’’, Analyst 109 (1984) 549. DOI: https://doi.org/10.1039/an9840900549

A. Aminot, D. S. Kirkwood & R. Kérouel, “Determination of ammonia in seawater by the indophenol-blue method: Evaluation of the ICESNUTSI/C5questionnaire’’, Mar. Chem. 56 (1997) 59. DOI: https://doi.org/10.1016/S0304-4203(96)00080-1

Y. Zhu, D. Yuan, Y. Huang, J. Ma, S. Feng & K. Lin, “A modified method for on-line determination of trace ammonium in seawater with along-path liquid waveguide capillary cell and spectrophotometric detection’’, Mar. Chem. 162 (2014) 114. DOI: https://doi.org/10.1016/j.marchem.2014.03.011

T. Kodama, T. Ichikawa, K. Hidaka, K. Furuya, “A highly sensitive and large concentration range colorimetric continuous flow analysis for ammonium concentration’’, J. Oceanography 71 (2015) 65. DOI: https://doi.org/10.1007/s10872-014-0260-6

D. Cogan, J. Cleary, C. Fay, A. Rickard, K. Jankowski, T. Phelan, M. Bowkett & D. Diamond, “The development of an autonomous sensing platform for the monitoring of ammonia in water using a simplified Berthelot method’’, Anal. Methods 19 (2014) 7606. DOI: https://doi.org/10.1039/C4AY01359J

N. Kaewwonglom & J. Jakmunee,“Sequential injection system with multi-parameter analysis capability for water quality measurement’’, Talanta 144 (2015) 755. DOI: https://doi.org/10.1016/j.talanta.2015.07.005

K. Inui, H. Yoshida, M. Takeuchi & H. Tanaka, “Application of air segementedamplitude modulated multiplexed flow analysis with software-based phase recognition to the determination of ammonium ion in water samples’’, J. Flow Injection Anal. 32 (2015) 5.

H. S. Ruppersberg, M. R. Goebel, S. I. Kleinert, D. Wünsch, K. Trautwein & R. Rabus, “Photometric detrermination of ammonium and phosphate in seawater medium using a microplate reader”, J. Mol. Microb. Biotech. 27 (2017) 73. DOI: https://doi.org/10.1159/000454814

Y. B. Cho, S. H. Jeong, H. Chun & Y. S. Kim, “Selective colorimetric detection of dissolved ammonia in water via modified Berthelot’s reaction on porous paper’’, Sens. Actuators B 256 (2018) 167– 175. doi:10.1016/j.snb.2017.10.069 DOI: https://doi.org/10.1016/j.snb.2017.10.069

W. Khongpet, S. Pencharee, C. Puangpila, S. K. Hartwell, S. Lapanantnoppakhun & J. Jakmunee, “A compact hydrodynamic sequential injection system for consecutive on-line determination of phosphate and ammonium’’, Microchem. J. 147 (2019) 403. DOI: https://doi.org/10.1016/j.microc.2019.03.040

F. Hashihama, J. Kanda, A.Tauchi,T. Kodama, H. Saito & K. Furuya,“Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP)’’,Talanta 143 (2015) 374. DOI: https://doi.org/10.1016/j.talanta.2015.05.007

K. Lin, P. Li, Q. Wu, S. Feng, J. Ma & D. Yuan, “Automated determination of ammonium in natural waters with reverse flow injection analysis based on the indophenols blue method with o-phenylphenol’’,Microchem. J. 138 (2018) 519. DOI: https://doi.org/10.1016/j.microc.2018.02.004

J. Ma, P. Li, K. Lin, Z. Chen, N. Chen, K. Liao & D. Yuan, “Optimization of a salinity-interference-free indophenols method for the determination of ammonium in natural waters using o-phenylphenol’’, Talanta 179(2018)608-614 DOI: https://doi.org/10.1016/j.talanta.2017.11.069

W. H. Evans & B. F. Partridge, “Determination of ammonia levels in water and wastewater with an ammonia probe’’,,Analyst 99 (1974) 367. DOI: https://doi.org/10.1039/an9749900367

R. B. R. Mesquita, A. Machado, I. C. Santos, A. A. Bordalo & A.O.S. Rangel, “Seasonal monitoring of inland bathing waters using a sequential injection method as a fast and effective tool for nutrient quantification (N:P)’’, Anal.Methods 8 (2016) 1973 DOI: https://doi.org/10.1039/C5AY02293B

Z. Zhu, J. J. Lu, M. I. G. Almeida, Q. Pu, S. D. Kolev & S. Liu, “A microfabricated electro-osmotic pump coupled to a gas-diffusion microchip for flow injection analysis of ammonia”, Microchimica Acta 182 (2015) 1063. DOI: https://doi.org/10.1007/s00604-014-1410-7

L. O. Šraj, M.I.G. Almeida, I. D. McKelvie & S.D. Kolev, “Determination of trace levels of ammonia in marine waters using a simple environmentally-friendly ammonia (SEA) analyser”, Mar.Chem. 194 (2017) 133. DOI: https://doi.org/10.1016/j.marchem.2017.06.008

T. Sukaram, P. Sirisakwisut, J. Sirirak, D. Nacapricha & S. Chaneam, “Environmentally friendly method for determination of ammonia nitrogen in fertilizers and wastewaters based on flow injection-spectrophotometric detection using natural reagent from orchid flower’’, Int. J. Environ. Anal. Chem. 98 (2018) 907. DOI: https://doi.org/10.1080/03067319.2018.1515356

M. Roth, “Fluorescence reaction for amino acids’’, Anal. Chem. 43 (1971) 880. DOI: https://doi.org/10.1021/ac60302a020

Z. Genfa & P. K. Dasgupta, “Fluorometric measurement of aqueous ammonium ion in a flow injection system’’, Anal. Chem. 61 (1989) 408198. DOI: https://doi.org/10.1021/ac00180a006

G. Giakisikli, E.Trikas, M. Petala, T. Karapantsios, G. Zachariadis & A. Anthemidis, “An integrated sequential injection analysis system for ammonium determination in recycled hygiene and potable water samples for future use in manned space missions’’, Microchem. J. 133 (2017) 490. DOI: https://doi.org/10.1016/j.microc.2017.04.008

] G. Giakisikli & A. N. Anthemidis, “Automatic pressure-assisted dual-headspace gas-liquid microextraction.Lab-in-syringe platform for membraneless gas separation of ammonia coupled with fluorometric sequential injection analysis’’, Anal. Chim. Acta 1033 (2018) 73. DOI: https://doi.org/10.1016/j.aca.2018.06.034

Y. Zhu, D. Yuan, H. Lin &T. Zhou, “Determination of ammonium in sea water by purge-and-trap and flow injection with fluorescence detection’’, Anal. Lett. 49 (2016) 665. DOI: https://doi.org/10.1080/00032719.2015.1041027

G. Cao, Y. Su, Y. Zhuang & J. Lu, “A new fluorescence method for determination of ammonium nitrogen in aquatic environment using derivatization with benzyl chloride”, J. Braz. Chem. Soc. 27(2016) 950. DOI: https://doi.org/10.5935/0103-5053.20150351

A. Bose, I. Thomas, G. Kavitha & E. Abraham, “Fluorescence spectroscopy and its applications”, International Journal of Advances in Pharmaceutical Analysis 8 (2018) 1.

J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous determination of ascorbic acid, Dopamine and uric acid Using high-performance screen-printed grapheme electrode’’, Biosens. Bioelectron 34 (2012) 70. DOI: https://doi.org/10.1016/j.bios.2012.01.016

Y. Yao, H. Wu & J. Ping, “Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor’’, FoodChem.274 (2019) 8. DOI: https://doi.org/10.1016/j.foodchem.2018.08.110

K. Lin, Y. Zhu, Y. Zhang & H. Lin, “Determination of ammonia nitrogen in natural waters:Recent advances and applications’’, Trends in Environmental Analytical Chemistry 24 (2019) e00073. DOI: https://doi.org/10.1016/j.teac.2019.e00073

D. Li., T. Wang, Z. Li, X. Xu, C. Wang & Y. Duan, “Application of graphene-based materials for detection of nitrate and nitrite in water—A review”.Sensors 20 (2020) 54. https://doi.org/10.3390/s20010054 DOI: https://doi.org/10.3390/s20010054

D. Li, X. Xu, Z. Li, T. Wang & C. Wang,“Detection methods of ammonia

nitrogen in water: A review”, Trends in Analytical Chemistry, 115890. https://doi.org/10.1016/j.trac.2020.11589010.1016/j.trac.2020.115890

A. Baciu, F. Manea, A.Pop, R. Pode & J. Schoonman, “Simultaneous voltammetric Detection of ammonium and nitrite from ground water at silver electrode corated Carbon nanotube electrode”, Process Saf. Environ. Protect.108 (2017) 18e25. https://doi.org/10.1016/j.psep.2016.05.006. DOI: https://doi.org/10.1016/j.psep.2016.05.006

L. Zhang, J. Liu, X. Peng, Q. Cui, D. He, C. Zhao & H. Suo, “Fabrication of a Ni foam-supported platinum nanoparticles-silver/polypyrrole electrode for aqueous ammonia sensing’’, Synth.Met .259 (2020) 116257. DOI: https://doi.org/10.1016/j.synthmet.2019.116257

F. Kubitza, “Sistemas de recirculacion: sistemas fechados comtratamentoe reusodaa?gua”, Panorama da Aqu?icultura 16 (2006) 15.

B. Sheela & S. K. Khasim Beebi, ``Bioremediation of ammonia from polluted waste waters: a review’’, American Journal of Microbiological Research 26 (2014) 201. DOI: https://doi.org/10.12691/ajmr-2-6-6

H. T. Dryden & L. R. Weatherley, “Aquaculture water treatment by ion exchange: continuous ammonium ion removal with clinoptilolite”.Rev Aquac Eng 8 (2015) 109. DOI: https://doi.org/10.1016/0144-8609(89)90008-3

A. Alshameri, C. Yan, Y. Al-Ani, A. S. Dawood, A. Ibrahim, C. Zhou & H. Wang, “An Investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: kinetics, isotherms and thermodynamics”. J. Tawainian Inst Chem Eng. https://doi.org/ 10.1016/j.jtice.2013.05.008

M. M. Higarashi, A. Kunz & R. M.Mattei, “Adsorption applied to the removal of ammonia from pre-treated piggery wastewater”, Quimica Nova 31 (2008) 1156. DOI: https://doi.org/10.1590/S0100-40422008000500043

A. Farkas, M. Rozic & Z. Barbaric-Mikocevic, “Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region”, Croat J. Hazard Mater .117 (2005) 25. DOI: https://doi.org/10.1016/j.jhazmat.2004.05.035

M. Sarioglu, “Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite”, Sep. Purif. Technol. 41(2005) 1. DOI: https://doi.org/10.1016/j.seppur.2004.03.008

K. M. Dontsova, D. Norton & C. T. Johnston, “Calcium and magnesium effects on ammonia adsorption by soil”, Soil Sci Soc Am J. 69(2005) 1225. DOI: https://doi.org/10.2136/sssaj2004.0335

A. Khalil, N. Sergeevich & V. Borisova, “Removal of ammonium from fish farms by biochar obtained from rice straw: Isotherm and kinetic studies for ammonium adsorption”, Adsorption Science & Technology (2018) 1. DOI: https://doi.org/10.1177/0263617418768944

F. Bernardi, I.V. Zadinelo, H. JoséAlves, F. Meurera & L.D. Santos, “Chitins and chitosans for the removal of total ammonia of aquaculture effluents”, Aquaculture 483 (2018) 203. DOI: https://doi.org/10.1016/j.aquaculture.2017.10.027

D.M. Monica, A. Agostiano & A..J. Ceglie, “An electrochemical sewage treatment process”, Appl. Electrochem. 10 (1980) 527. DOI: https://doi.org/10.1007/BF00614086

L. Li & Y. J. Liu, “Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics”, Hazard.Mater. 161 (2009) 1010. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.047

B. P. Dash & S. Chaudhari, “Electrochemical denitrification of simulated groundwater”, WaterRes. 39 (2005) 4065. DOI: https://doi.org/10.1016/j.watres.2005.07.032

C. A. Martinez-Huitle & S. Ferro, “Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes” Chem. Soc. Rev. 35 (2006) 1324. DOI: https://doi.org/10.1039/B517632H

C. Comninellis, “Electrocatalysis in the electrochemical conversion/combustion of Organic pollutants for wastewater treatment”, Electrochim. Acta 39 (1994) 1857. DOI: https://doi.org/10.1016/0013-4686(94)85175-1

L. Marinec & F. B. Leitz, “Electro-oxidation of ammonia in wastewater”, J. Appl. Electrochem. 8 (1978) 333 DOI: https://doi.org/10.1007/BF00612687

J. W. Schultze & S. Trasatti, Electrodes of conductive metallic oxides, S (Ed), Part A,

Elsevier Scientific Publishing Company: Amsterdam, The Netherlands.

E. A. Bryant, G. P. Fulton & G. C. Budd, Disinfection alternatives for safe drinking water, VanNostrand Reinhold: NewYork, NY, USA, 1992; ISBN0442318413.

X. Mao, L. Xiong, X. Hu, Z. Yan, L. Wang & G. Xu, “Remediation of ammonia-contaminated ground water inland fill sites with electrochemical reactive barriers: A bench scale study”, Waste Management 78 (2018) 69. https://doi.org/10.1016/j.wasman.2018.05.015 DOI: https://doi.org/10.1016/j.wasman.2018.05.015

M. A. Q. Alfaro, S. Ferro & C. A. Martínez-Huitle, Y. M. Vong, “Boron doped diamond electrode for the wastewater treatment”, J. Braz. Chem.Soc. 17 (2006) 17227. DOI: https://doi.org/10.1590/S0103-50532006000200003

Y. Liu, L. Li & R. Goel, “Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions”, J. Hazard. Mater. 167 (2009) 959. DOI: https://doi.org/10.1016/j.jhazmat.2009.01.082

F. Bouhezila, M. Hariti, H. Lounici & N. Mameri, “Treatment of the OUEDSMAR town Landfill leachate by an electrochemical reactor”, Desalination 280 (2011) 347. DOI: https://doi.org/10.1016/j.desal.2011.07.032

W. L. Chou, C.T. Wang & S. Y. Chang, “Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption”, J. Hazard.Mater. 168 (2009) 1200. DOI: https://doi.org/10.1016/j.jhazmat.2009.02.163

P. Canizares, P. Rubén, C.Sáez & M. A. Rodrigo, “Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes J. Environ.Mgt. 90 (2009) 410. DOI: https://doi.org/10.1016/j.jenvman.2007.10.010

K.O.Sodeinde, S. O. Olusanya, V. F. Enogheghase & O. S. Lawal, ”Photocatalytic degradation of Janus Green Blue dye in wastewater by green synthesized reduced graphene oxide-silver nanocomposite”, International Journal of Environmental Analytical Chemistry 102 (2022) 1. https://doi.org/10.1080/03067319.2021.2002309 DOI: https://doi.org/10.1080/03067319.2021.2002309

S. Song, A. Meng, S. Jiang & B. Cheng, “Three-dimensional hollow graphene efficiently promotes electron transfer of Ag3PO4 for photocatalytically eliminating phenol”, Appl. Surf. Sci 442 (2018) 224. DOI: https://doi.org/10.1016/j.apsusc.2018.02.102

R. Yu, X. Yu, J. Fu, Y. Zhang, Y. Liu, Y. Zhang & S. Wu, “Removal of ammonia Nitrogen in aquaculture wastewater by composite photocatalyst TiO2/carbonfibre”, Water and Environmental Journal, https://doi.org/10.1111/wej.126862021

Y. C. Ching & G. Redzwan, “Biological treatment of fish processing saline wastewater for reuse as liquid fertilizer”, Sustainability 9 (2017) 1062. DOI: https://doi.org/10.3390/su9071062

F. Lananan, S. H. AbdulHamid, W. N. Din, N. Ali, H. Khatoon, A. Jusoh & A. Endut, “Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.)” International Biodeterioration & Biodegradation 95 (2014) 127. DOI: https://doi.org/10.1016/j.ibiod.2014.06.013

B. O. Omitoyin, E. K. Ajani, O. I. Okeleye, B. U. Akpoilih & A. A. Ogunjobi, “Biological Treatments of fish farm effluent and its reuse in the culture of Nile tilapia (Oreochromis niloticus)”, J. Aquac Res Development 8 (2017) 2. https://doi.org/10.4172/2155-9546.1000469 DOI: https://doi.org/10.4172/2155-9546.1000469

World Health Organization 2004 Guidelines for drinking water quality.(3rd edn) Recommendation, WHO: Geneva, Switzerland (2004).

W. T. Mook, M. H. Chakrabarti, M. K. Aroua, G. M. A. Khan, B. S. Ali, M. S. Islam & M. A. Abu-Hassan, “Removal of total ammonia nitrogen (TAN),nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review”, Desalination 285 (2012) 13. DOI: https://doi.org/10.1016/j.desal.2011.09.029

O. I. Lekang & H. Kleppe, “Efficiency of nitrification in trickling filters using different filter media”, Aquac. Eng. 21 (2000)181. DOI: https://doi.org/10.1016/S0144-8609(99)00032-1

E. H. Eding, A. Kamstra, J. A. J. Verreth, E. A. Huisman & A. Klapwijk, “Design and Operation of nitrifying trickling filters in recirculating aquaculture:a review”, Aquac. Eng 34 (2006) 234. DOI: https://doi.org/10.1016/j.aquaeng.2005.09.007

R. Crab,Y. Avnimelech, T. Defoirdt, P. Bossier & W.Verstraete, “Nitrogen removal techniques in aquaculture for a sustainable production” Aquaculture 270 (2007) 1. DOI: https://doi.org/10.1016/j.aquaculture.2007.05.006

L. G. Obeti, J. Wanyama, N. Banadda, A. Candia, S. Onep, R . Walozi & A. Ebic “Bio-filtration technologies for filtering ammonia in Fish tank effluent for reuse–A review’’, Journal of Environmental Science and Engineering B8 (2019) 205. DOI: https://doi.org/10.17265/2162-5263/2019.06.001

S. T. Summerfelt, “Design and management of conventional fluidized-sand biofilters”, Aquac. Eng. 32 (2006) 275. DOI: https://doi.org/10.1016/j.aquaeng.2005.08.010

R. Moore, J. Quarmby & T. Stephenson, “The effect of media size on the performance of biological aerated filters”, Water Res. 35 (2001) 514. DOI: https://doi.org/10.1016/S0043-1354(00)00534-0

J. Davidson, N. Helwig & S. T. Summerfelt, “Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent”, Aquac. Eng 39 (2008) 6. DOI: https://doi.org/10.1016/j.aquaeng.2008.04.002

N. Schnel, Y. Barak, T. Ezer, Z. Dafni & V. J. Rijn, “Design and performance of a zero discharge tilapia recirculating system”, Aquac. Eng. 26 (2002) 191. DOI: https://doi.org/10.1016/S0144-8609(02)00013-4

J. A. Mir-Tutusaus, E. Parlade, M. Villagrasa, D. Barcelo, S. Rodríguez-Mozaz, S., M. Martínez-Alonso, N. Gaju & M. Sarr`a, G. Caminal, ``Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor”, J. Biol. Eng. 13 (2019) 1. https://doi.org/10.1186/s13036-019-0179-y. DOI: https://doi.org/10.1186/s13036-019-0179-y

B. B. Negi, A. Sinharoy & K. Pakshirajan, “Selenite removal from wastewater using fungal pelleted airlift bioreactor’’ Environ. Sci. Pollut. Res. 27 (2020) 992. https://doi.org/10.1007/s11356-019-06946-6 DOI: https://doi.org/10.1007/s11356-019-06946-6

Y. Ding, Z. Guo, J. Mei, Z. Liang, Z. Li & X. Hou, “Investigation into the novel Micro algae membrane bioreactor with internal circulating fluidized bed for marine aquaculture wastewater treatment’’, Membranes 10 (2020) 353 DOI: https://doi.org/10.3390/membranes10110353

B. Dalecka, M. Strods, T. Juhna & G. K. Rajarao, “Removal of total phosphorus, Ammonia nitrogen and organic carbon from non-sterile municipal wastewater with Trametes versicolor and Aspergillus luchuensis”, Microbiological Research 241 (2020) 126586. DOI: https://doi.org/10.1016/j.micres.2020.126586

D. A. Hammer, Creating freshwater Wetlands, CRC Press Inc., Boca Raton, Florida, (1997).

J. Vymazal & T. Brezinova, “Accumulation of heavy metals in above ground biomass of phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review”, Chem. Eng. J. 290 (2016) 232. http://dx.doi.org/10.1016/j.cej.2015.12.108. DOI: https://doi.org/10.1016/j.cej.2015.12.108

B. Jawecki, K. Paweska & M. Sobota, “Operating household wastewater treatment Plants in the light of binding quality standards for wastewater discharged to water bodies or to soil”, Water Land Develop 32 (2017) 31. http://dx.doi.org/10.1515/jwld-2017-0004. DOI: https://doi.org/10.1515/jwld-2017-0004

R. H. Kadlec & S. D. Wallace, Treatment Wetlands, CRC Press, Boca Raton, Florida (2009). DOI: https://doi.org/10.1201/9781420012514

Y. F. Lin, S. R. Jing, D.Y. Lee & T. W.Wang, “Nutrient removal from aquaculture wastewater using a constructed wetlands system”, Aquaculture 209 (2002) 169. DOI: https://doi.org/10.1016/S0044-8486(01)00801-8

F. Masi, S. Caffaz & A. Ghrabi, “Multi-stage constructed wetland systems for municipal wastewater treatment”, Water Sci. Technol. 67 (2013) 1590. DOI: https://doi.org/10.2166/wst.2013.035

O. H. Jehawi, S. R. S. Abdullah & S. B. Kurniawan, “Performance of pilot hybrid reed bed constructed wetland with aeration system on nutrient removal for domestic wastewater treatment”, Environmental Technology & Innovation 19 (2020) 100891. DOI: https://doi.org/10.1016/j.eti.2020.100891

T. A. Verhoeven & A. F. M. Meuleman, “Wetlands for wastewater treatment: opportunities and limitations”, Ecol. Eng. 12 (1999) 5. DOI: https://doi.org/10.1016/S0925-8574(98)00050-0

S. Naylor, J. Brisson, M. A. Labelle & Y. Comeau, “Treatment of freshwater fish farm effluent using constructed wetlands: the role of plants and substrate”, Water Sci. Technol. 48 (2003) 215. DOI: https://doi.org/10.2166/wst.2003.0324

J. G. J. Olivier & J. A. H. W. Peters, “Trends in global CO2 and total greenhouse gas emissions: 2018 report The Hague, Netherlands”, PBL Netherlands Environmental Assessment Agency (2018) 53.

Published

2022-12-08

How to Cite

Sodeinde, K. O., Animashaun, S. A., & Adubiaro, H. O. (2022). Methods for the Detection and Remediation of Ammonia from Aquaculture Effluent: A Review. Journal of the Nigerian Society of Physical Sciences, 5(1), 854. https://doi.org/10.46481/jnsps.2023.854