First-principles calculations of Fluorine-doped Titanium dioxide: A prospective material for solar cells application

  • A. Shamsudeen Department of Physics, Federal College of Education Zaria, Nigeria
  • Shuaibu S. Department of Physics, Kaduna State University, P. M. B. 2339, Kaduna, Nigeria
  • S.G. Abdu Department of Physics, Kaduna State University, P. M. B. 2339, Kaduna, Nigeria
  • M. S. Abubakar Department of Physics, Kaduna State University, P. M. B. 2339, Kaduna, Nigeria
  • Abdullahi lawal Department of Physics, Federal College of Education Zaria, Nigeria
Keywords: DFT, TiO2, Fluorine, electronic properties, solar cells

Abstract

This study focuses on the anatase TiO2 doped Fluorine to investigate their structural and electronics properties using Density Functional Theory (DFT) within generalized gradient approximation (GGA) as implemented in Quantum ESPRESSO (QE). For the anatase TiO2 phase the calculated electronic band structures of pure TiO2 and TiO2 doped Fluorine nanocrystals are displayed along a high symmetry directions and the energy range of band structure is plotted from 0.0 eV to 3.9 eV , the energy separation between the bottom of the conduction band and the top of valence band occurred at the Γ and  points, indicating that  anatase TiO2 is an indirect band gap material with an approximate value of 2.30 eV energy gap, this value is consistent with previous DFT result. When F is added the band structure did not change much because fluorine element doping is conducive to the generation of Oxygen holes and enhances the mobility of effective electrons which can enhance the conductivity of the adsorbent substrate and improve the solar cell performance of the fluorine-doped TiO2. The band gap value obtained for F doped TiO2 was found to be 2.11 eV. The dopant formation energy of Fluorine is calculated to be -55.6 Ry which is equivalent to -756.5 eV.

References

E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.-H. Kim, Solar energy: Potential and future prospects, Renewable and Sustainable Energy Reviews, 82 (2018) 894. DOI: https://doi.org/10.1016/j.rser.2017.09.094

J. Robertson, B. Falabretti, Electronic structure of transparent conducting oxides, Handbook of transparent conductors, Springer2011, pp. 27-50. DOI: https://doi.org/10.1007/978-1-4419-1638-9_2

K. Nagaveni, M. Hegde, N. Ravishankar, G. Subbanna, G. Madras, Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity, Langmuir, 20 (2004) 2900.

Y. Xiao, C. Wang, K.K. Kondamareddy, P. Liu, F. Qi, H. Zhang, S. Guo, X.-Z. Zhao, Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold, Journal of Power Sources, 422 (2019) 138.

J.Y. Seo, R. Uchida, H.S. Kim, Y. Saygili, J. Luo, C. Moore, J. Kerrod, A. Wagstaff, M. Eklund, R. McIntyre, Boosting the Efficiency of Perovskite Solar Cells with CsBr‐Modified Mesoporous TiO2 Beads as Electron‐Selective Contact, Advanced Functional Materials, 28 (2018) 1705763.

T. Singh, S. Öz, A. Sasinska, R. Frohnhoven, S. Mathur, T. Miyasaka, Sulfate‐Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali‐Doped TiO2 Electron‐Transporting Layers, Advanced Functional Materials, 28 (2018) 1706287.

A. Parameswari, Y. Soujanya, G.N. Sastry, Functionalized Rutile TiO2 (110) as a Sorbent To Capture CO2 through Noncovalent Interactions: A Computational Investigation, The Journal of Physical Chemistry C, 123 (2019) 3491. DOI: https://doi.org/10.1021/acs.jpcc.8b09311

Y. Wang, A.S. Ganeshraja, C. Jin, K. Zhu, J. Wang, One-pot synthesis visible-light-active TiO2 photocatalysts at low temperature by peroxotitanium complex, Journal of Alloys and Compounds, 765 (2018) 551.

O. Çomaklı, M. Yazıcı, H. Kovacı, T. Yetim, A. Yetim, A. Çelik, Tribological and electrochemical properties of TiO2 films produced on Cp-Ti by sol-gel and SILAR in bio-simulated environment, Surface and Coatings Technology, 352 (2018) 513.

M. Gurbuz, B. Atay, A. Dogan, Synthesis of High‐Temperature‐Stable TiO2 and its Application on Ag+‐Activated Ceramic Tile, International Journal of Applied Ceramic Technology, 12 (2015) 426.

H. Gao, X. Li, J. Lv, G. Liu, Interfacial charge transfer and enhanced photocatalytic mechanisms for the hybrid graphene/anatase TiO2 (001) nanocomposites, The Journal of Physical Chemistry C, 117 (2013) 16022.

W. Wang, C. Shan, H. Zhu, F. Ma, D. Shen, X. Fan, K. Choy, Metal–insulator–semiconductor–insulator–metal structured titanium dioxide ultraviolet photodetector, Journal of Physics D: Applied Physics, 43 (2010) 045102.

A.G. Ilie, M. Scarisoreanu, E. Dutu, F. Dumitrache, A.-M. Banici, C.T. Fleaca, E. Vasile, I. Mihailescu, Study of phase development and thermal stability in as synthesized TiO2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment, Applied Surface Science, 427 (2018) 798. DOI: https://doi.org/10.1016/j.apsusc.2017.08.041

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of physics: Condensed matter, 21 (2009) 395502.

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, 77 (1996) 3865.

H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B, 13 (1976) 5188.

X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, D. Zou, Conductive mesh based flexible dye-sensitized solar cells, Applied Physics Letters, 90 (2007) 073501.

D.S. Parker, F. Zhang, Y.S. Kim, R.I. Kaiser, A. Landera, V.V. Kislov, A.M. Mebel, A. Tielens, Low temperature formation of naphthalene and its role in the synthesis of PAHs (polycyclic aromatic hydrocarbons) in the interstellar medium, Proceedings of the National Academy of Sciences, 109 (2012) 53.

H. Ali, R. Seidel, A. Bergmann, B. Winter, Electronic structure of aqueous-phase anatase titanium dioxide nanoparticles probed by liquid jet photoelectron spectroscopy, Journal of Materials Chemistry A, 7 (2019) 6665.

M. Mohamad, B.U. Haq, R. Ahmed, A. Shaari, N. Ali, R. Hussain, A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs, Materials Science in Semiconductor Processing, 31 (2015) 405.

H. Xing-Gang, L. An-Dong, H. Mei-Dong, L. Bin, W. Xiao-Ling, First-principles band calculations on electronic structures of Ag-doped rutile and anatase TiO2, Chinese Physics Letters, 26 (2009) 077106.

R. Faccio, L. Fernández-Werner, H. Pardo, A. W Mombru, Current trends in materials for dye sensitized solar cells, Recent patents on nanotechnology, 5 (2011) 46.

D. Reyes-Coronado, G. Rodríguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R.d. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology, 19 (2008) 145605. DOI: https://doi.org/10.1088/0957-4484/19/14/145605

P.J.Perdew, K. Burke, and M. Ernzerhof. "Generalized gradient approximation made simple." Physical review letters 18 (1996) 3865.

D. J. Chadi, "Special points for Brillouin-zone integrations." Physical Review B 16 (1977) 1746.

S. S. Alhassan, A. Shuaibu, and M. Y. Onimisi. "Structural and Electronic Properties of Delafossite CuGa 1− x Mn x O 2 (X= 0.5) Nanocomposite: A First Principle Study." Physics Memoir-Journal of Theoretical & Applied Physics 1 (2019) 106.

H. Dorian AH, M. H. Assadi, S. Li, A. Yu, and C. C. Sorrell. "Ab initio study of phase stability in doped TiO 2." Computational Mechanics 50 (2012) 185.

M. Mazmira, B. U. Haq, R. Ahmed, A. Shaari, N. Ali, and R. Hussain. "A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs." Materials Science in Semiconductor Processing 31 (2015) 405. DOI: https://doi.org/10.1016/j.mssp.2014.12.027

S. Raphael, M. Kraft, and O. R. Inderwildi. "Electronic and optical properties of aluminium-doped anatase and rutile TiO 2 from ab initio calculations." Physical Review B 81, (2010) 075111. DOI: https://doi.org/10.1103/PhysRevB.81.075111

P. Sandeep K., A. Abate, P. Ruckdeschel, B. Roose, Karl C. Gödel, Yana Vaynzof, Aditya Santhala "Performance and stability enhancement of dye‐sensitized and perovskite solar cells by Al doping of TiO2." Advanced Functional Materials 24 (2014): 6046. DOI: https://doi.org/10.1002/adfm.201401658

L. Min, J. Zhang, and Y. Zhang, "First-principles calculation of compensated (2N, W) codoping impacts on band gap engineering in anatase TiO2." Chemical Physics Letters 527 (2012) 63.

C. Pawan, P. Basyach, and A. Choudhury. "Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: an experimental and DFT investigation." Chemical Physics 434 (2014) 1.

Published
2019-12-16
How to Cite
Shamsudeen, A., S., S., Abdu, S., Abubakar, M. S., & lawal, A. (2019). First-principles calculations of Fluorine-doped Titanium dioxide: A prospective material for solar cells application. Journal of the Nigerian Society of Physical Sciences, 1(4), 131-137. https://doi.org/10.46481/jnsps.2019.27
Section
Original Research