Evaluation of radiation shielding and mechanical properties of palm nut shell ash modernized concrete: a comparative analysis

Authors

  • U. Rilwan
    Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University, P.O.Box 1500, Biu, Borno State, Nigeria
  • M. I. Sayyed
    Department of Physics, Faculty of Science, Isra University, Amman, Jordan
  • K. A. Mahmoud
    Ural Federal University, St. Mira, 19, 620002, Yekaterinburg, Russia
  • S. Muhammad
    Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University, P.O.Box 1500, Biu, Borno State, Nigeria
  • A. Alkasim
    Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University, P.O.Box 1500, Biu, Borno State, Nigeria
  • S. I. Ikpughul
    Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University, P.O.Box 1500, Biu, Borno State, Nigeria
  • S. J. Iwa
    Department of Physics, Federal University of Technology, Owerri, Imo State, Nigeria
  • Jibrin Ahmed Guto
    Department of Building, Faculty of Environmental, Nigerian Army University, P.O. Box 1500, Biu, Borno State, Nigeria
  • O. A. Adeyeba
    Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Kingdom of Saudi Arabia
  • M. W. Marashdeh
    Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia

Keywords:

Gamma radiation shielding, Mechanical properties, Palm nut shell ash, granite, porosity.

Abstract

Gamma radiation poses health and environmental risks, creating the need for sustainable, low-cost, and eco-friendly shielding materials. In this study, we modified ordinary concrete with palm nut shell ash (PNSA) to examine its mechanical, physical, and gamma ray shielding performance. The adopted W/C (water-to-cement) ratio was 0.5 for the entire mixtures and the ratio of the samples’ masses to their respective volumes gives the densities of our samples. The results reported that, as PNSA advances from 0 to 0.15 kg, the concrete density decreased from 2.40 to 2.25 g/cm3, accompanied by a rise in porosity from 14.5% to 21.5% as well as an increase in water absorption from 6.8% to 8.6%, 6.4% to 8%, and 5% to 7% respectively for 7, 14, and 28 curing days. The mechanical characteristics decrease as PNSA is added to the concrete matrix. The Monte Carlo N-Particle (MCNP) and Phy-X/PSD simulation results showed that CPNSA2 had superior linear attenuation coefficient (LAC), confirming higher gamma ray attenuation ability. Generally, this work displayed the prospect of adding PNSA for the purpose of shielding against the low and intermediate gamma-ray energy. This study contributes by introducing palm nut shell ash as a sustainable cement substitute, demonstrating improved gamma-ray attenuation with CPNSA2, and reducing reliance on costly and toxic conventional shielding materials.

Dimensions

[1] N. Zarei, M. R. Rezaie & A. Jomehzadeh, “Radiation hazards investigation of photon scattering by Elekta 6 MeV linac during liver cancer treatment”, Chemical Methodologies 6 (2022) 582. https://doi.org/10.22034/chemm.2022.338957.1493.

[2] H. J. Alasali, U. Rilwan, K. A. Mahmoud, T. A. Hanafy & M. I. Sayyed, “Comparative analysis of TiO2, Fe2O3, CaO and CuO in borate-based glasses for gamma ray shielding”, Nuclear Engineering and Technology 56 (2024) 4050. https://doi.org/10.1016/j.net.2024.05.006.

[3] C. Thomas, J. Rico, P. Tamayo, F. Ballester, J. Setien & J. A. Polanco,´ “Effect of elevated temperature on the mechanical properties and microstructure of heavy-weight magnetite concrete with steel fibers”, Cement and Concrete Composites 103 (2019) 80. https://doi.org/10.1016/j.cemconcomp.2019.04.029.

[4] U. Rilwan, S. A. Edeh, M. M. Idris, I. I. Fatima, S. F. Olukotun, G. Z. Arinseh, P. Z. Bonat, A. El-Taher, K. A. Mahmoud, T. A. Hanafy & M. I. Sayyed, “Influence of waste glass on the gamma-ray shielding performance of concrete”, Annals of Nuclear Energy 210 (2025) 110876. https://doi.org/10.1016/j.anucene.2024.110876.

[5] M. I. Sayyed, A. H. Almuqrin, E. Mohamed & U. Rilwan. “Evaluation of incorporation of granite waste and SnO2-NPs into coating mortar for gamma-ray shielding”, Radiation Physics and Chemistry 222 (2024) 111818. https://doi.org/10.1016/j.radphyschem.2024.111818.

[6] S. Bello, J. Simon, A. S. Aliyu, A. Abdulqadir, U. Rilwan & A. ElTaher, “The use of nuclear energy to solve Nigeria’s energy crisis and help the country achieve its SDGs”, Journal of Radiation and Nuclear Applications 9 (2024) 77. https://www.naturalspublishing.com/Article.asp?ArtcID=28169.

[7] A. H. Almuqrin, M. I. Sayyed, A. Kumar & U. Rilwan, “Characterization of glasses composed of PbO, ZnO, MgO, and B2O3 in terms of their structural, optical, and gamma ray shielding properties”, Nuclear Engineering and Technology 56 (2024) 2842. https://doi.org/10.1016/j.net.2024.02.047.

[8] U. Rilwan, G. M. Aliyu, S. F. Olukotun, M. M. Idris, A. A. Mundi, S. Bello, I. Umar, A. El-Taher, K. A. Mahmoud & M. I. Sayyed, “Recycling and characterization of bone incorporated with concrete for gammaradiation shielding applications”, Nuclear Engineering and Technology 56 (2024) 2828. https://doi.org/10.1016/j.net.2024.02.045.

[9] M. Ogawa, Y. Nakajima, R. Kubota & Y. Endo, “Two cases of acute lead poisoning due to occupational exposure to lead”, Clinical Toxicology 46 (2008) 332. https://doi.org/10.1080/15563650701816448.

[10] U. Rilwan, M. A. Abdulazeez, I. Maina, O. W. Olasoji, A. El-Taher, A. U. Maisalatee, M. U. Sarki, G. Mohammed & M. I. Sayyed, “Feasibility study on the possibility of utilizing e-nut shell ashes for gammaradiation protection application”, Radiation Physics and Chemistry 233 (2025) 112748. https://doi.org/10.1016/j.radphyschem.2025.112748.

[11] U. Rilwan, M. A. Abdulazeez, I. Maina, O. W. Olasoji, A. El-Taher, I. S. Adeshina & M. I. Sayyed, “Sustainable gamma radiation shielding: coconut shell ash modified concrete for radiation protection applications”, Journal of Radiation and Nuclear Applications 10 (2025) 33. https://doi.org/10.18576/jrna/100106.

[12] B. Han, L. Zhang & J. Ou, “Radiation shielding concrete. in smart and multifunctional concrete toward sustainable infrastructures”, Springer: Singapore 10 (2017) 329. https://link.springer.com/book/10.1007/978-981-10-4349-9.

[13] A. Mesbahi, A. A. Azarpeyvand & A. Shirazi, “Photoneutron production and backscattering in high density concretes used for radiation therapy shielding”, Annals of Nuclear Energy 38 (2011) 2752. https://doi.org/10.1016/j.anucene.2011.08.023.

[14] I. M. Nikbin, S. Mehdipour, S. Dezhampanah, R. Mohammadi, R. Mohebbi, H. H. Moghadam & A. Sadrmomtazi, “Effect of high temperature on mechanical and gamma ray shielding properties of concrete containing nano-TiO2”, Radiation Physics and Chemistry 174 (2020) 108967. https://doi.org/10.1016/j.radphyschem.2020.108967.

[15] A. S. Ouda, “Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding”, Progress in Nuclear Energy 79 (2015) 48. https://doi.org/10.1016/j.pnucene.2014.11.009.

[16] M. Safajou-Jahankhanemlou & F. Hooriabad-Saboor, “The Influence of Waste Tire Powder on Mechanical and Acoustic Properties of Autoclaved Aerated Concrete”, Advanced Journal of Chemistry, Section A 5 (2022) 190. https://doi.org/10.22034/ajca.2022.333553.1306.

[17] M. I. Sayyed, U. Rilwan, K. A. Mahmoud & E. Mohamed, “Experimental study of the radiation shielding characteristics of new PbO-Na2O-B2O3BaO glasses”, Nuclear Engineering and Technology 56 (2024) 2437. https://doi.org/10.1016/j.net.2024.01.058.

[18] A. H. Almuqrin, K. A. Mahmoud, U. Rilwan & M. I. Sayyed, “Influence of various metal oxides (PbO, Fe2O3, MgO, and Al2O3) on the mechanical properties and γ-ray attenuation performance of zinc barium borate glasses”, Nuclear Engineering and Technology 56 (2024) 2711. https://doi.org/10.1016/j.net.2024.02.032.

[19] I. B. Topc¸u, “Properties of heavyweight concrete produced with barite”, Cement and Concrete Research 33 (2003) 815. https://doi.org/10.1016/S0008-8846(02)01063-3.

[20] I. Akkurt & A. M. El-Khayatt, “The effect of barite proportion on neutron and gamma-ray shielding”. Annals of Nuclear Energy 51 (2013) 5. https://doi.org/10.1016/j.anucene.2012.08.026.

[21] M. I. Sayyed, H. O. Tekin, O. Kılıcoglu, O. Agar & M. H. M. Zaid, “Shielding features of concrete types containing sepiolite mineral: Comprehensive study on experimental, XCOM and MCNPX results”, Results in Physics 11 (2018) 40. https://doi.org/10.1016/j.rinp.2018.08.029.

[22] Y. K. Kaika, I. Umaru, M. M. Idris, U. Rilwan, J. A. Guto, M. I. Sayyed, A. U. Maisalatee, A. A. Mundi & K.A. Mahmoud, “Microstructural, thermal analysis, and gamma-ray shielding properties of bricks made of various local natural materials”, Radiation Physics and Chemistry 233 (2025) 112742. https://doi.org/10.1016/j.radphyschem.2025.112742.

[23] A. M. Zeyad, M. A. M. Johari, A. Abutaleb & B. A. Tayeh, “The effect of steam curing regimes on the chloride resistance and pore size of highest strength green concrete”. Construction and Building Materials 280 (2021) 122409. https://doi.org/10.1016/j.conbuildmat.2021.122409.

[24] S. A. Yildizel, G. Calis & B. A. Tayeh, “Mechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavement”, Journal of Materials Research and Technology 9 (2020) 13341. https://doi.org/10.1016/j.jmrt.2020.09.070.

[25] M. M. Idris, I. O. Olarinoye, M. T. Kolo, S. O. Ibrahim, U. Rilwan & M. I. Sayyed, “A comparative study of the radiation dose response of (ZnO)x(TeO2)1-x thin films for high energy X-ray application”, Ceramics International 51 (2025) 290. https://doi.org/10.1016/j.ceramint.2025.03.290.

[26] O. M. Ikumapayi, & T. A. Esther, “Composition, characteristics and socioeconomic benefits of palm kernel shell exploitation-an overview”, Journal of Environmental Science and Technology 11 (2018) 1. https://doi.org/10.3923/jest.2018.220.232.

[27] M. A. Mydin-Othuman, J. C. Khor & N. Md Sani, “Approaches to construction waste management in Malaysia”, In MATEC Web of Conferences, EDP Sciences 17 (2014) 01014. https://doi.org/10.1051/matecconf/20141701014.

[28] R. S. Aita, H. A. Abdel-Ghany, E. M. Ibrahim, M. G. El-Feky, I. E. El-Aassy & K. A. Mahmoud, “Gamma-rays attenuation by mineralized siltstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations”, Radiation Physics and Chemistry 198 (2022) 110281. https://doi.org/10.1016/j.radphyschem.2022.110281.

[29] V. Fugaru, S. Bercea, C. Postolache, S. Manea, A. Moanta, I. Petre, M. Gheorghe, “Gamma ray shielding properties of some concrete materials”, Acta Physica Polonica A 127 (2015) 1427. https://doi.org/10.12693/APhysPolA.127.1427.

[30] A. S. Ouda & H. S. Abdelgader, “Assessing the physical, mechanical properties, and γ-ray attenuation of heavy density concrete for radiation shielding purposes”, Geosystem Engineering 22 (2019) 72. https://doi.org/10.1080/12269328.2018.1469434.

[31] S. Kumar, K. S. Mann, T. Singh & S. Singh, “Investigations on the gamma-ray shielding performance of green concrete using theoretical, experimental and simulation techniques”, Progress in Nuclear Energy 134 (2021) 103654. https://doi.org/10.1016/j.pnucene.2021.103654.

[32] U. Rilwan, M. A. Abdulazeez, I. Maina, O. W. Olasoji, A. El-Taher, I. G. Alhindawi, K. A. Mahmoud, M. I. Sayyed, E. Mohamed, M. Rashad & Y. Maghrbi, “The use of coconut shell ash as partial replacement of cement to improve the thermal properties of concrete and waste management sustainability in Nigeria and Africa, for radiation shielding application”, Scientific African 27 (2025) e02578. https://doi.org/10.1016/j.sciaf.2025.e02578.

[33] Aml Almutery, Wan Nordiana Rahman, Faizal Mohamed, Chia Chin Hua, Khairunisak Abdul Razak, Raizulnasuha Ab Rashid, U. Rilwan, M.I. Sayyed, Yasser Maghrbi, “Enhancing the gamma radiation shielding performance: The impact of Bi2O3 and MgO nanoparticles on PMMA”, Radiation Physics and Chemistry 237 (2025) 113070. https://doi.org/10.1016/j.radphyschem.2025.113070.

[34] M. I. Sayyed, K. A. Mahmoud, S. Biradar, U. Rilwan, L. A. Najam, “Dual-purpose borate-based glasses: optical features and Monte Carlo simulations of gamma radiation shielding”, Nuclear Engineering and Technology 57 (2025) 103752. https://doi.org/10.1016/j.net.2025.103752.

[35] U. Rilwan, M. A. Abdulazeez I. Maina O. W. Olasoji S. F. Olukotun, A. El-Taher, M. I. Sayyed, G. Y. N. Chenko, J. A. Guto, O. A. Adeyeba & M. W. Marashdeh, “Gamma Radiation Shielding and Thermal Performance of Concrete with Coconut Shell Ash Replacement”, NIPES - Journal of Science and Technology Research 7 (2025) 254. https://doi.org/10.37933/nipes/7.2.2025.27.

[36] K. A. Esraa, M. M. Habiba, M. F. Alrashdi, M. Elsafi, “Studying the shielding ability of different cement mortars against gamma ray sources using waste iron and BaO microparticles, Nexus of Future Materials 1 (2024) 1. https://doi.org/10.70128/583327.

[37] S. Yasmin, M. Saifuddin, S.R. Chakraborty, A.H. Meaze, B.S. Barua, “Evaluation of TeO2-WO3-Bi2O3 glasses for their potential in radiation shielding with the utilization of the Phy-X software program, Nexus of Future Materials 1 (2024) 51. https://doi.org/10.70128/584048.

[38] Shrikant Biradar, Ashok Dinkar, G.B. Devidas, “A comprehensive study of the effect of bao doping on the physical, mechanical, optical, and radiation shielding properties of borate-based glasses”, Nexus of Future Materials 1 (2024) 108. https://doi.org/10.70128/584259.

[39] Zehra Merve Cinan, “Innovative phosphate glasses of advanced material designs for radiation shielding?, Nexus of Future Materials 1 (2024) 92. https://doi.org/10.70128/584052.

[40] K. A Mahmoud, H. M. Alsafi, O. L. Tashlykov, A. M. Abouelsoad, “Investigation of the radiation shielding properties for ZnO and NiO and their based composites, Nexus of Future Materials 1 (2024) 86. https://doi.org/10.70128/584051.

[41] E. L. Ruiz, “Radiation shielding analysis of barium-titanium-borate glasses doped with zinc oxide, Nexus of Future Materials 1 (2024) 80. https://doi.org/10.70128/584050.

[42] V. Setiawan, K. Veeravelan, A. Akouibaa & H. Heryanto, “Comparative half-value layer study of novel PbO-B2O3-CuO-CaO glasses versus previous reports”, Nexus of Future Materials 1 (2024) 126. https://doi.org/10.70128/585024.

[43] Y. Maghrbi, M. Chouchen & H. B. Rahmouni, “Exploring transmission factor in high-density glasses: the effects of ZnO and Bi2O3 concentrations”, Nexus of Future Materials 1 (2024) 120. https://doi.org/10.70128/585023.

[44] K. A. Naseer, “Bismuth-doped glasses: a novel approach to efficient radiation attenuation”, Nexus of Future Materials 2 (2025) 177. https://doi.org/10.70128/593188.

[45] Kawa M. Kaky, Usama Altimari & Abed Jawad Kadhim, “analytical and comparative study on the impact of CaO on the γ-ray shielding performance of borate-based glasses”, Nexus of Future Materials 2 (2025) 172. https://doi.org/10.70128/592452.

[46] P. N. Patil, Manjunatha, M. M. Hosamani, A. S. Bennal & N. M. Badiger, “Influence of PbO2 and Gd2O3 on the gamma-ray shielding performance of borosilicate glasses”, Nexus of Future Materials 2 (2025) 210. https://doi.org/10.70128/617892.

[47] Mengge Dong, “From Mineral to high-value shielding material: conversion of ludwigite into polyimide resin-based composites for medical x-rays protection”, Nexus of Future Materials 2 (2025) 202. https://doi.org/10.70128/610992.

Published

2026-02-01

How to Cite

Evaluation of radiation shielding and mechanical properties of palm nut shell ash modernized concrete: a comparative analysis. (2026). Journal of the Nigerian Society of Physical Sciences, 8(1), 2872. https://doi.org/10.46481/jnsps.2026.2872

Issue

Section

Physics & Astronomy

How to Cite

Evaluation of radiation shielding and mechanical properties of palm nut shell ash modernized concrete: a comparative analysis. (2026). Journal of the Nigerian Society of Physical Sciences, 8(1), 2872. https://doi.org/10.46481/jnsps.2026.2872